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The landscape of Mathematical General Relativity
Λ > 0: Dias, Gibbons, Santos, Way
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The landscape of Mathematical General Relativity
many authors: Klainerman, Giorgi, Szeftel, Dafermos, Holzegel, Taylor, Hintz, Vasy,
Andersson, Blue, Ma, Moschidis, ...
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The landscape of Mathematical General Relativity
Corvino & Schoen, Carlotto & Schoen, PTC & Delay, Delay & Mazzieri, Isenberg, Lee &
Stavrov, Czimek, Mao, Oh, Tao, ...
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The landscape of Mathematical General Relativity
Aretakis, Czimek & Rodnianski, Kehle & Unger, PTC, Cong & Gray
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The landscape of Mathematical General Relativity
many authors, Benatti, Fognagnolo & Mazzieri
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The landscape of Mathematical General Relativity
Penrose’s Strong Cosmic Censorship: are Einstein equations predictable?
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The landscape of Mathematical General Relativity
Belinski, Khalatnikov, Liftshitz: generic solutions of Einstein equations behave
chaotically near singularities?

Mathematical general relativity

Cauchy problem

Strong CC

?? BKL ??

Cauchy data

global chargesgluing

characteristicspacelike

Weak CC

BH stability

Stationary black holes

degeneratenon-degenerate

Lorentzian geometry

rough

rougher

smooth

Piotr T. Chruściel MGR



Black holes?
Throughout this talk: vacuum spacetimes with Λ ∈ R

Gravitationsphysik
Gruppe P. T. Chruściel                                       gravity.univie.ac.at

To learn everything you ever wanted to know about black holes

start here continue here and finish here
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Static vs. stationary

and degenerate vs.
non-degenerate

Time-independent can be static or stationary;

def. of degenerate only in the static case
for simplicity

• static: stationarity
plus time-reversal
isometry
• Regular, static, black
hole exteriors (M,g)
take the form
M = R× Σ,

Embedding a non-degenerate space-geometry in higher dimension

g = −V 2dt2 + γ, and the Riemannian metric γ satisfies

in vacuum: VRicci(γ) = HessV , ∆V = 0 ,

with ∂Σ = {V = 0}. ∂Σ = non-degenerate horizons;
asymptotically cylindrical ends = degenerate horizons
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Λ = 0: ”Black Holes have No Hair”
The analytic, connected classification in space-time dimension four; contributions by
Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod, new
proof by Agostini-Mazzieri

Stationary,

electro-

vacuum,
analytic,

connected,
regular black hole

=
Kerr-Newman

in the exterior region

Static,
electro-vacuum,

regular black hole
=

MP or RN

in the exterior region
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Analyticity?
what’s a uniqueness theorem good for

Real-life objects are never exactly stationary

One expects that many spacetimes will evolve to a
stationary solution

Theorem (announced by Klainerman, Giorgi & Szeftel (2021,
2022))
Near-Schwarzschild non-degenerate vacuum black holes with
Λ = 0 evolve to Kerr

The end state has no reason to be analytic, and therefore
a uniqueness theorem assuming analyticity is nice but not
useful
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Analyticity?
what’s a uniqueness theorem good for

Real-life objects are never exactly stationary
One expects that many spacetimes will evolve to a
stationary solution

Theorem (announced by Klainerman, Giorgi & Szeftel (2021,
2022))
Near-Schwarzschild non-degenerate vacuum black holes with
Λ = 0 evolve to Kerr

The end state has no reason to be analytic, and therefore
a uniqueness theorem assuming analyticity is nice but not
useful

Piotr T. Chruściel MGR
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Analyticity?
Some old progress: Alexakis, Ionescu, Klainerman arXiv:0904.0982 [gr-qc]

Theorem (Alexakis, Ionescu, Klainerman (2009))
Regular non-degenerate stationary vacuum black holes near
non-extreme Kerr are Kerr

(no assumption of analyticity)
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Static vacuum field equations
with cosmological constant, space dimension n, normalised

g = −V 2dt2 + gijdx idx j , ∂tV = 0 = ∂tgij

VRij + DiDjV = ±nVgij ,

∆V = ∓nV

Known solutions: Birmingham-Kottler (Schwarzschild-de Sitter):

g = −V 2dt2 + V−2dr2 + r2dΩ2 , V 2 = 1 − Λr2

3
− 2m

r
.

m ∈ R, or Nariai

g = −(λ− Λr2)dt2 +
dr2

λ− Λr2 + |Λ|−1hκ

κ = ±1, κΛ > 0, λ ∈ R
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Λ > 0: stationary, vacuum, close to Schwarzschild-de
Sitter
Hintz (2017)

g = −V 2(dt + θidx i)2 + gijdx idx j , ∂tV = 0 = ∂tgij = ∂tθi .

Theorem
Stationary solutions close to Schwarzschild-de Sitter are the
slowly rotating Kerr-de Sitter metrics.

The proof builds on the proof of dynamical stability of the region
between horizons of slowly rotating KdS spacetimes by Hintz &
Vasy (2016)
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Λ > 0: Uniqueness, static case
only partial results

g = −V 2dt2 + gijdx idx j , ∂tV = 0 = ∂tgij

Theorem (Borghini & Mazzieri )

Schwarzschild-de Sitter’s are the only static black holes

and satisfying a “virtual mass” condition
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Λ > 0: Uniqueness, static case
only partial results

g = −V 2dt2 + gijdx idx j , ∂tV = 0 = ∂tgij

Theorem (Borghini & Mazzieri & PTC 2021 )

Schwarzschild-de Sitter’s are the only static black holes

with an ombilical & separating maximal level set of V

and satisfying a “virtual mass” condition

(special case of more general theorems); builds on previous work by
Borghini and Mazzieri (2017,2018)
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Λ > 0: Uniqueness, static case
only partial results

g = −V 2dt2 + gijdx idx j , ∂tV = 0 = ∂tgij

Theorem (Borghini & Mazzieri & PTC 2021 )

Schwarzschild-de Sitter’s are the only static black holes

with an ombilical & separating maximal level set of V

and satisfying a “virtual mass” condition

long history of incomplete published claims:
Lafontaine & Rozoy Actes du séminaire de théorie spectrale et
géometrie (1999)

NN1 & NN2 Commun. Anal. Geom. 2015,
NN3 & NN4 Invent. Mathematica 2022, retracted 2023

Piotr T. Chruściel MGR
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Further static black holes with Λ?
O.J.C. Dias, G.W. Gibbons, J.E. Santos, B. Way, arXiv:2303.07361
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The near horizon geometry
key for understanding degenerate horizons

Near a stationary (event) Killing horizon H , in
Isenberg-Moncrief coordinates, with ∂v g = 0,

g = rφdv2 + 2dvdr + 2rhadxadv + habdxadxb ,

H = {r = 0}

degenerate ⇐⇒ φ|r=0 = 0
Moncrief ∼1970: in vacuum ∃ non-degenerate solutions
with an arbitrary analytic hab (no global regularity expected in
general)
PTC, Reall, Tod 2006: Vacuum, static, degenerate, Λ = 0
=⇒ no solutions
Near horizon geometry: set φ(v , r , xa) = rf (xa) and

Xa = ha|r=0 , gab = hab|r=0 ,
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g = rφdv2 + 2dvdr + 2rhadxadv + habdxadxb ,

H = {r = 0}

degenerate ⇐⇒ φ|r=0 = 0
Moncrief ∼1970: in vacuum ∃ non-degenerate solutions
with an arbitrary analytic hab (no global regularity expected in
general)
PTC, Reall, Tod 2006: Vacuum, static, degenerate, Λ = 0
=⇒ no solutions
Near horizon geometry: set φ(v , r , xa) = rf (xa) and
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Near-horizon equations

Near-horizon metric:

g = r2fdv2 + 2dvdr + 2rXadxadv + gabdxadxb ,

with f = f (xa), etc. Vacuum Einstein equations

Ric(g) =
1
2

X ♭ ⊗ X ♭ − 1
2
LX g + λg , (0.1)

where Ric(g) is the Ricci tensor of g, LX is the Lie derivative,
the one–form X ♭ is g–dual to X with respect to the metric g and
λ is the cosmological constant.

( For physicists:

Rab =
1
2

XaXb −∇(aXb) + λgab .) (0.2)
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Dunajski-Lucietti, 2306.17512: “The degenerate
version” of Hawking’s rigidity theorem

previous proofs assuming axisymmetry: Hajicek 1975; Pawlowski Lewandowski 2005;
or assuming near-Kerr (PTC, Szybka, Tod 2018); or further global conditions (PTC
2023)

Theorem

The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to (0.1) on M = S2.

Theorem

Any non-trivial vacuum near-horizon geometry with negative
cosmological constant and compact cross-sections has an
isometry group containing SO(2,1) with 3-dimensional orbits.

previously: Hollands, Ishibashi (2015), under diophantine
conditions
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Dunajski-Lucietti, 2306.17512: “The degenerate
version” of Hawking’s rigidity theorem

previous proofs assuming axisymmetry: Hajicek 1975; Pawlowski Lewandowski 2005;
or assuming near-Kerr (PTC, Szybka, Tod 2018); or further global conditions (PTC
2023)

Theorem

The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to (0.1) on M = S2.

Theorem

Any non-trivial vacuum near-horizon geometry with negative
cosmological constant and compact cross-sections has an
isometry group containing SO(2,1) with 3-dimensional orbits.

previously: Hollands, Ishibashi (2015), under diophantine
conditions

Piotr T. Chruściel MGR



Dunajski-Lucietti, 2306.17512: “The degenerate
Hawking’s rigidity theorem”

Candidate Killing vector:

Ka := ΓXa + (dΓ)a , with Γ so that ∇aK a = 0 . (0.3)

The magic identity:

∇(aKb)∇(aK b) = ∇a
(

K b∇(aKb) − 1
2Ka∆Γ− 1

2Ka∇bK b − λΓKa

)
+∇bK b

(
− 1

2Γ
|K |2 + 1

2
∆Γ +

1
2
∇bK b +

1
2Γ

K b∇bΓ + λΓ

)
.
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Cauchy problem
Spacelike Cauchy problem
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Spacelike constraint equations

Initial data surface Σ, Riemannian metric gij , i , j = 1, . . .n,
symmetric tensor Kij (“initial time derivative of the metric”) the

scalar constraint equation (Λ is the cosmological constant):

R(gij) =����XXXX16πT00 + 2Λ + |K |2 − (trK )2 ,

and the vector constraint equation:

DjK j
k − DkK j

j =����XXXX8πT0k .

good or bad?
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Gluing method
Nonlinear “superpositions”

In linear theories, new initial data can be
obtained by adding old ones

This is not possible in general relativity
because the constraint equations are
nonlinear
Corvino and Schoen (∼ 2000) have invented
a method, where nearby solutions can be
glued together to a new one (“gluing”)

The method exploits in a clever and sophisticated
way the “underdetermined elliptic character” (the
symbol of the linearized operator is surjective) of
the constraint equations and functional spaces
with degenerating weights

Alternative
approach:

gluing
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Gluing method
Nonlinear “superpositions”

In linear theories, new initial data can be
obtained by adding old ones
This is not possible in general relativity
because the constraint equations are
nonlinear
Corvino and Schoen (∼ 2000) have invented
a method, where nearby solutions can be
glued together to a new one (“gluing”)

The method exploits in a clever and sophisticated
way the “underdetermined elliptic character” (the
symbol of the linearized operator is surjective) of
the constraint equations

and functional spaces
with degenerating weights

6 functions gij
6 functions Kij

= 12

minus (3-
dimensional
diffeomor-
phism + 1
choice of

initial slice)
= 4

8 functions, 4
constraint
equations
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Mao-Tao’s version of the Corvino-Schoen gluing
Simplified proof;

the original Corvino & Schoen theorem: to some nearby Kerr

• In the traceless gauge, the linearised prescribed scalar
constraint equation at the Euclidean metric is

δR[h] ≡ ∂i∂jhij = f .

• first trick: the double-divergence operator has a fundamental
solution supported on an annulus, up to a spherically
symmetric tail
• second trick (inspired by Czimek-Rodnianski), involving a
clever linearised solution of the vacuum constraints, one
obtains:

Theorem (Mao, Oh, Tao (2023))
An asymptotically flat initial data set can be glued to any Kerr
(possibly Schwarzschild) with longer energy-momentum vector
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Screening the gravitational field
Carlotto-Schoen “exotic gluings” (2014)

Remove a solid cone C1 from Euclidean
space; initial data (Rn,g = δ,Kij = 0)

Remove a slightly larger cone C2 from an
asymptotically flat initial data set (M,gij ,Kij)

Theorem (Carlotto and Schoen)
If the tip of C2 is sufficiently far away there exists
an initial data set which coincides with (M,gij ,Kij)
outside of C2 and has Minkowskian data on C1

Mao, Tao, arXiv:2210.09437: can be done with
optimal 1/r decay using a Green function for δR
supported in a cone.
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Applications of spacelike gluing:
Gluing-in small black holes with Λ = 0

; the Hintz black hole sprinkler (compare
Anderson, Corvino, Pasqualotto arXiv:2301.08238)

Theorem (Peter Hintz, arXiv:2210.13960)

Let (Σ,g,K ) be a vacuum initial data set and suppose that
there are no Killing vectors near p ∈ Σ. For every ϵ > 0
sufficiently small there exists a vacuum initial data set which
coincides with (g,K ) outside an ϵ-neighborhood of p and
coincides with a small Kerr black hole inside the neighborhood.

This can be done all over the place
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Asymptotic gluing:
Gluing-in black holes with Λ > 0 (P. Hintz, arXiv:2001.10401)
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Characteristic Cauchy problem
Characteristic gluing

Piotr T. Chruściel MGR



Characteristic gluing
The Aretakis-Czimek-Rodnianski gluing

QUESTION (Aretakis, Czimek and Rodnianski (2021))

Can you find vacuum characteristic initial data interpolating
between two characteristic initial data sets?

𝒩 1

𝒩̃ 2

g1

g2

S1

S̃2

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

Answer: “kind of”, with obstructions, for data near
a 3+1 Minkowskian light cone
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ACR gluing

differentiability? Λ? General topologies? higher dimensions?

Characteristic gluing: implicit function theorem together with

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02449)

The C2 linearised characteristic gluing at (3 + 1)-Minkowski is
solvable up to a 10-dimensional space of obstructions.

(3 + 1)-Minkowski: cross-section S ≈ S2, Λ = 0 = m

Theorem (PTC, Wan Cong and Finnian Gray, in preparation)

The Ck linearised characteristic gluing at (n + 1)-Birmingham -
Kottler is solvable up to a finite-dimensional space of
obstructions.

(n + 1)-Birmingham - Kottler: cross-section S compact Einstein
spaces e.g. spheres, torus, higher genus; Λ ∈ R, m ∈ R.
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General topologies, higher dimensions, differentiability
Work in progress with Wan Cong and Finnian Gray

Obstructions arise from kernels of linear elliptic operators on
the cross-section S of the characteristic hypersurface; affected
by dimension and topology of S, e.g.:

C2-gluing with m = 0, Λ = 0 S2 T2 S4

dim. of obstruction space 10 7 30

Both a non-vanishing mass m and a non-zero cosmological
constant Λ provide additional degrees of freedom to remove
some of the obstructions, e.g.:

Ck -gluing S2, m = 0 S2, m = 0 S2, m ̸= 0 S, m ̸= 0
obstr. k = 3: 20 k = 4: 44 4 1+dim KV of S
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ACR gluings: applications
“No third law”

CONJECTURE (“third law of black hole dynamics”, Bardeen, Carter
& Hawking (1973))

A black hole with zero surface-gravity cannot be formed in a
dynamical process.

zero surface-gravity ≈ zero temperature

Theorem (Kehle & Unger, arXiv:2211.15742)
The third law is wrong for spherically symmetric solutions of the
Einstein-Maxwell-charged-scalar-field equations.

Proof: use null gluing to an extreme Reissner-Nordström black
hole.
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455 )
Black holes can be formed in vacuum by focusing of
gravitational waves.

Proof: null gluing of a Minkowskian light-cone to a Kerr black
hole

Previous work: Christodoulou (2008), arXiv:0805.3880, 594
pages & Li and Yu (2015) 70 pages
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455, 28 pages )
Black holes can be formed in vacuum by focusing of
gravitational waves.

Proof: null gluing of a Minkowskian light-cone to a Kerr black
hole
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ACR gluings: applications
Optimal asymptotics

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02456)
The Carlotto-Schoen gluing can be done with optimal 1/r decay.
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(alternative simple proof of the Carlotto-Schoen theorem,
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ACR gluings: applications
“Obstruction-free gluing”

Theorem (Czimek & Rodnianski, arXiv:2210.09663)
Asymptotically flat initial data with mass m can be deformed, at
large distances, to Kerr data with any mass larger than m, same
momentum, and with arbitrary remaining asymptotic charges.

Remaining asymptotic charges: angular momentum and center
of mass.

The positive energy theorem prevents one to glue Minkowskian
data to data with smaller mass

precedes the already-mentioned proof by Mao, Oh and Tao
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Global charges
The Penrose inequality
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Penrose inequality
3d, with optimal asymptotics: Benatti, Fogagnolo, Mazzieri, arXiv:2212.10215

Theorem

Let (M,g) be a complete C1
τ -asymptotically flat Riemannian

3-manifold, τ > 1/2, with nonnegative scalar curvature and
smooth, compact, minimal, connected and outermost
boundary. Then,

cp(∂M)
1

3−p ≤ 2m (0.4)

for any 1 < p ≤ 2. Letting p → 1+ one obtains√
|∂M|
16π

≤ m. (0.5)

cp(K ) = inf
{ 1

4π

(
p − 1
3 − p

)p−1 ∫
M∖K

|Dv |p
∣∣∣v ∈ C∞

c (M), v ≥ 1 on K
}
.

Piotr T. Chruściel MGR
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The proof; u solves the p-Laplace equation
Agostiniani, Mantegazza, Mazzieri, Oronzio’s version (arXiv:2205.11642) of an identity
of Kijowski (∼ 1982); see also Hirsch, Stern, Bray, Khuri, Kazaras 2102.11421,
1911.06754

div X =
c

p−1
3−p
p |∇u|[

3−p
p−1 (1 − u)

] p−1
3−p+1


|∇u|p−1

cp−1
p

− RΣ

2︸ ︷︷ ︸
use Gauss-Bonnet on level sets of u

+
| ∇Σ|∇u| |2

|∇u|2
+

R
2︸︷︷︸
≥0

+
|h|2

2

+
5 − p
p − 1

 |∇u|
3−p
p−1 (1 − u)

− H
2

2
 (0.6)

Piotr T. Chruściel MGR



The vector field X

X =
c

p−1
3−p
p[

3−p
p−1 (1 − u)

] p−1
3−p

{
|∇u|p−2∇u

cp−1
p

+
∇|∇u| − ∆u

|∇u|∇u
3−p
p−1 (1 − u)

+
|∇u|∇u[

3−p
p−1 (1 − u)

]2

 .

Piotr T. Chruściel MGR


