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The landscape of Mathematical General Relativity

Penrose, Hawking, Galloway, Beem, Ehrlich, Minguzzi,...

Mathematical general relativity

/\

‘ Lorentzian geometry ’ Stationary black holes Cauchy problem
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The landscape of Mathematical General Relativity

Sbierski; Klainerman-Szeftel; Graf, Kunzinger, Ohanyan, Steinbauer,
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The landscape of Mathematical General Relativity

Kunzinger, Ohanyan, Steinbauer, S@mann, McCann, Cavaletti, Mondino, ...

Mathematical general relativity

‘ Lorentzian geometry

smooth rough
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The landscape of Mathematical General Relativity
A > 0:

Mathematical general relativity

/\

‘ Lorentzian geometry ’ Stationary black holes

Tt

smooth  rough

rougher

non-degenerate
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The landscape of Mathematical General Relativity

Mathematical general relativity

7 T

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC
rougher

/\

non-degenerate  degenerate
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The landscape of Mathematical General Relativity

many authors: Klainerman, Giorgi, Szeftel, Dafermos, Holzegel, Taylor, Hintz, Vasy,
Andersson, Blue, Ma, Moschidis, ...

Mathematical general relativity

/\

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC
rougher BH stability

/\

non-degenerate  degenerate
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The landscape of Mathematical General Relativity

Mathematical general relativity

7 T

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC Cauchy data
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The landscape of Mathematical General Relativity

PTC & Delay, Delay & Mazzieri, Isenberg, Lee &
Stavrov, Czimek, Mao, Oh, Tao, ...

Mathematical general relativity

/\

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC Cauchy data
rougher BH stability gluing
non-degenerate  degenerate spacelike
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The landscape of Mathematical General Relativity

Mathematical general relativity

7 T

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC Cauchy data
rougher BH stability gluing
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The landscape of Mathematical General Relativity

many authors,

Mathematical general relativity

7 T

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC Cauchy data
rougher BH stability gluing global charges
non-degenerate  degenerate spacelike  characteristic
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The landscape of Mathematical General Relativity

Penrose’s Strong Cosmic Censorship: are Einstein equations predictable?

Mathematical general relativity

7 T

‘ Lorentzian geometry ‘ ’ Stationary black holes Cauchy problem
smooth  rough Weak CC Cauchy data Strong CC
rougher BH stability gluing global charges
non-degenerate  degenerate spacelike  characteristic
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The landscape of Mathematical General Relativity

Belinski, Khalatnikov, Liftshitz: generic solutions of Einstein equations behave
chaotically near singularities?

Mathematical general relativity

7 T

‘ Lorentzian geometry ‘ ’ Stationary black holes ‘ Cauchy problem

A o

smooth  rough Weak CC Cauchy data Strong CC
rougher BH stability gluing global charges ~ ?? BKL ??
non-degenerate  degenerate spacelike  characteristic
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Black holes?

Throughout this talk:

Gravitationsphysik o Lvr\}igre]rsitéit
Gruppe P. T. Chrusciel gravity.univie.ac.at |ERSEEER.

To learn everything you ever wanted to know about black holes

Piotr T. Chrusciel

B Elements
of General
Relativity

Stationary Black Holes: Uniquencss and Beyond

el

Geometry of Black Holes

) Birkhiuser

start here continue here and finish here
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Static vs. stationary

Time-independent can be static or stationary;

e static: stationarity
plus time-reversal
isometry
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Static vs. stationary and degenerate vs.
non-degenerate

Time-independent can be static or stationary; def. of degenerate only in the static case

o static: stationarity
plus time-reversal
isometry

e Regular, static, black
hole exteriors (M, g)
take the form
M=RxZ,
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Static vs. stationary and degenerate vs.
non-degenerate

Time-independent can be static or stationary;

o static: stationarity
plus time-reversal
isometry

e Regular, static, black
hole exteriors (M, g)
take the form
M=RxZ,

g = —V2dt? + ~, and the Riemannian metric ~ satisfies
in vacuum: VRicci(y) = HessV , AV =0,

with 0¥ = {V = 0}. = niversitit
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Time-independent can be static or stationary;

o static: stationarity
plus time-reversal
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[ ] Regulaf, StatIC, bIaCk space station

hole exteriors (M, g)

<———— horizon

take the form black holc region
M=RxZ,
Embedding a non-degenerate space-geometry in higher dimension
g = —V2dt? + ~, and the Riemannian metric - satisfies

in vacuum: VRicci(y) = HessV , AV =0,
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Static vs. stationary and degenerate vs.
non-degenerate

Time-independent can be static or stationary;

o static: stationarity
plus time-reversal

isometry &
[ ] Regulaf, StatIC, bIaCk space station

hole exteriors (M, g)

<———— horizon

take the form black holc region
M=RxZ,
Embedding a non-degenerate space-geometry in higher dimension
g = —V2dt? + ~, and the Riemannian metric - satisfies

in vacuum: VRicci(y) = HessV , AV =0,

with 9% = {V = 0}. 9% = non-degenerate horizons;
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A = 0: "Black Holes have No Hair”

The analytic, connected classification in space-time dimension four; contributions by

Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,

> wiversitat
—'wien

Piotr T. Chrusciel MGR



A = 0: "Black Holes have No Hair”

The analytic, connected classification in space-time dimension four; contributions by

Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,
electro-vacuum,

> wiversitat
—'wien

Piotr T. Chrusciel MGR



A = 0: "Black Holes have No Hair”

The analytic, connected classification in space-time dimension four; contributions by

Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,
electro-vacuum,
analytic,

> wiversitat
—'wien

Piotr T. Chrusciel MGR



A = 0: "Black Holes have No Hair”

The analytic, connected classification in space-time dimension four; contributions by

Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,
electro-vacuum,
analytic,
connected,

> wiversitat
—'wien

Piotr T. Chrusciel MGR



A = 0: "Black Holes have No Hair”

The analytic, connected classification in space-time dimension four; contributions by
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A = 0: "Black Holes have No Hair”

The analytic, connected classification in space-time dimension four; contributions by
Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,

PTC-Sudarsky-Wald, Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod

Stationary Static,
’ electro-vacuum,
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analytic,
connected,
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Analyticity?
what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary
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Analyticity?
what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary

@ One expects that many spacetimes will evolve to a
stationary solution
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Analyticity?
what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary

@ One expects that many spacetimes will evolve to a
stationary solution

Theorem (announced by Klainerman, Giorgi & Szeftel (2021,

2022))

Near-Schwarzschild non-degenerate vacuum black holes with
A = 0 evolve to Kerr
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Analyticity?
what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary

@ One expects that many spacetimes will evolve to a
stationary solution

Theorem (announced by Klainerman, Giorgi & Szeftel (2021,

2022))

Near-Schwarzschild non-degenerate vacuum black holes with
A = 0 evolve to Kerr

@ The end state has no reason to be analytic, and therefore
a uniqueness theorem assuming analyticity is nice but not
useful
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Analyticity?

Some old progress: Alexakis, lonescu, Klainerman arXiv:0904.0982 [gr-qc]

Theorem (Alexakis, lonescu, Klainerman (2009))

Regular non-degenerate stationary vacuum black holes near
non-extreme Kerr are Kerr
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Analyticity?

Some old progress: Alexakis, lonescu, Klainerman arXiv:0904.0982 [gr-qc]

Theorem (Alexakis, lonescu, Klainerman (2009))

Regular non-degenerate stationary vacuum black holes near
non-extreme Kerr are Kerr (no assumption of analyticity)
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Static vacuum field equations

with cosmological constant, space dimension n, normalised
g=-V3de® + gydx'ax!, 9V =0=0g;

VR’] + D,D]V = ian,-j,
AV =FnV
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Static vacuum field equations

with cosmological constant, space dimension n, normalised

g=-V3de® + gydx'ax!, 9V =0=0g;
VR’] + D,D]V = ian,-j ,
AV =FxnV

Known solutions: Birmingham-Kottler (Schwarzschild-de Sitter):

g=-V2dt* + V2dr? + rPdQ?,  VP=1- -,

meR,
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Static vacuum field equations

with cosmological constant, space dimension n, normalised

g=-V3de® + gydx'ax!, 9V =0=0g;
VR’] + D,D]V = ian,-j ,
AV =FxnV

Known solutions: Birmingham-Kottler (Schwarzschild-de Sitter):

A2 2
g =—V2df? + V2dr? + r?dQ?, V2:1—Tr—7m,
m € R, or Nariai
= —(A=Ar?)dt? + o + A" 'h
9= A —Ar? g

k==+1,kA>0,AeR wniversitat

Piotr T. Chrusciel



: stationary, vacuum, close to Schwarzschild-de

Sitter
Hintz (2017)

g=— Vz(dt + H/dX/)z + g;jdxidxj, onV=0= atgij = 0t; .

Stationary solutions close to Schwarzschild-de Sitter are the
slowly rotating Kerr-de Sitter metrics.
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: stationary, vacuum, close to Schwarzschild-de

Sitter
Hintz (2017)

g=— Vz(dt + H/dX/)z + g;jdxidxj, onV=0= atgij = 0t; .

Stationary solutions close to Schwarzschild-de Sitter are the
slowly rotating Kerr-de Sitter metrics.

The proof builds on the proof of dynamical stability of the region
between horizons of slowly rotating KdS spacetimes by Hintz &

Vasy (2016) -
. ngﬁrsnat
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: Uniqueness,
only partial results

g=-V3de +gidx'ax!, 9V =0=0dg;

Theorem (Borghini & Mazzieri )

Schwarzschild-de Sitter’s are the only static black holes

and satisfying a “virtual mass” condition
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: Uniqueness,
only partial results

g=—V2d® + gdx'dx’ , otV =0 = dig;j

Theorem (Borghini & Mazzieri & PTC

Schwarzschild-de Sitter’s are the only static black holes
with an ombilical & separating maximal level set of V

and satisfying a “virtual mass” condition

(special case of more general theorems); builds on previous work by
Borghini and Mazzieri (2017,2018)
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: Uniqueness,
only partial results

g= V2 + gidx'dx, 0V =0 =g

Theorem (Borghini & Mazzieri & PTC

Schwarzschild-de Sitter’s are the only static black holes
with an ombilical & separating maximal level set of V

and satisfying a “virtual mass” condition

long history of incomplete published claims:
Lafontaine & Rozoy Actes du séminaire de théorie spectrale et
géometrie (1999)
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: Uniqueness,
only partial results

g=—V2d + g;jdXide, 0V =0 = digj

Theorem (Borghini & Mazzieri & PTC

Schwarzschild-de Sitter’s are the only static black holes
with an ombilical & separating maximal level set of V

and satisfying a “virtual mass” condition

long history of wrong published claims:
NN1 & NN2 Commun. Anal. Geom. 2015,
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: Uniqueness,
only partial results

g=—V2d + g;jdXide, 0V =0 = digj

Theorem (Borghini & Mazzieri & PTC

Schwarzschild-de Sitter’s are the only static black holes
with an ombilical & separating maximal level set of V

and satisfying a “virtual mass” condition

long history of wrong published claims:
NN1 & NN2 Commun. Anal. Geom. 2015,

NN3 & NN4 Invent. Mathematica 2022, retracted 2023
- ngﬁrsnat
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Further static black holes with A?
0.J.C. Dias, G.W. Gibbons, J.E. Santos, B. Way, arXiv:2303.07361

FIG. 3. Contour plot showing the level sets of the lapse function N. The cosmological horizon is the outer solid black semicircle.
The horizon axes has the two black hole horizons as solid magenta lines, and the outer and inner axes in dashed black lines.
The green square is where N takes its maximum value.




The near horizon geometry

key for understanding horizons
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The near horizon geometry

key for understanding horizons

@ Near a stationary (event) Killing horizon 7, in
Isenberg-Moncrief coordinates, with 0,g = 0,

g = rodv? + 2dvdr + 2rhadxdv + hapdx2ax? |
A ={r=0}
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@ Moncrief ~1970: in vacuum 3 non-degenerate solutions
with an arbitrary analytic h,p (no global regularity expected in
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°

72 wniversitat
_wien

Piotr T. Chrusciel MGR



The near horizon geometry

key for understanding horizons

@ Near a stationary (event) Killing horizon 7, in
Isenberg-Moncrief coordinates, with 0,g = 0,

g = rodv? + 2dvdr + 2rhadxdv + hapdx2ax? |
A ={r=0}

@ degenerate <= ¢|,—o =0

@ Moncrief ~1970: in vacuum 3 non-degenerate solutions
with an arbitrary analytic h,p (no global regularity expected in
general)

@ PTC, Reall, Tod 2006: Vacuum, static, degenerate, A =0
= no solutions
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The near horizon geometry

key for understanding horizons

@ Near a stationary (event) Killing horizon 7, in
Isenberg-Moncrief coordinates, with 0,g = 0,

g = rodv? + 2dvdr + 2rhadxdv + hapdx2ax? |
A ={r=0}

@ degenerate <= ¢|,—o =0

@ Moncrief ~1970: in vacuum 3 non-degenerate solutions
with an arbitrary analytic h,p (no global regularity expected in
general)

@ PTC, Reall, Tod 2006: Vacuum, static, degenerate, A =0
— no solutions

@ Near horizon geometry: set p(v, r, x?) = rf(x?) and

72 wniversitat
Xa = hglr=o, 9ab = hap|r=0 ~wien
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Near-horizon equations

Near-horizon metric:
g = r’fav? + 2dvdr + 2rXdx2adv + gapdxZdx?

with f = f(x@), etc. Vacuum Einstein equations

. 1 1
Ric(g) = 5Xb®xb ~5Lxg+ g, (0.1)

where Ric(g) is the Ricci tensor of g, Ly is the Lie derivative,
the one—form X’ is g—dual to X with respect to the metric g and
A is the cosmological constant.

( For physicists: Q
1
Rab = 5XaXo — V(aXp) + Aab ) (0.2)
~ Wniversitat
_wien

Piotr T. Chrusciel MGR



Dunajski-Lucietti, 2306.17512: “The degenerate
version” of Hawking’s rigidity theorem

The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to (0.1) on M = S?.
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Dunajski-Lucietti, 2306.17512: “The degenerate
version” of Hawking’s rigidity theorem

previous proofs assuming axisymmetry: Hajicek 1975; Pawlowski Lewandowski 2005;

or assuming near-Kerr (PTC, Szybka, Tod 2018); or further global conditions (PTC
2023)

The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to (0.1) on M = S?.
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Dunajski-Lucietti, 2306.17512: “The degenerate
version” of Hawking’s rigidity theorem

The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to (0.1) on M = S?.

Any non-trivial vacuum near-horizon geometry with negative
cosmological constant and compact cross-sections has an
isometry group containing SO(2, 1) with 3-dimensional orbits.
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Dunajski-Lucietti, 2306.17512: “The degenerate
version” of Hawking’s rigidity theorem

The extremal Kerr horizon (possibly with cosmological
constant) is the unique solution to (0.1) on M = S?.

Any non-trivial vacuum near-horizon geometry with negative
cosmological constant and compact cross-sections has an
isometry group containing SO(2, 1) with 3-dimensional orbits.

previously: Hollands, Ishibashi (2015), under diophantine_ it
conditions _Wige
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Dunajski-Lucietti, 2306.17512: “The degenerate

Hawking’s rigidity theorem”

Candidate Killing vector:

Kz :=TXa+ (dlN)a, with T sothat V,K?=0. (0.3)
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Dunajski-Lucietti, 2306.17512: “The degenerate

Hawking’s rigidity theorem”

Candidate Killing vector:
Ky :=TXa+ (dlNa, withT sothat VK2 =0. (0.3)
The magic identity:

V (aKp) V@KP)
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Dunajski-Lucietti, 2306.17512: “The degenerate

Hawking’s rigidity theorem”

Candidate Killing vector:
Ky :=TXa+ (dlNa, withT sothat VK2 =0. (0.3)
The magic identity:

V(aKe) VK = V2 (KOV (aKp) — SKaAT = JKaVoKE = ATK, )
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Dunajski-Lucietti, 2306.17512: “The degenerate

Hawking’s rigidity theorem”

Candidate Killing vector:
Ky :=TXa+ (dlNa, withT sothat VK2 =0. (0.3)
The magic identity:
V(aKe) VK = V2 (KOV (aKp) — SKaAT = JKaVoKE = ATK, )
1 1

1 1
+ VpK? <—2rK|2 + 5 AT+ 5va" + EKbvbr + AF) .
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Cauchy problem
Spacelike Cauchy problem
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Spacelike constraint equations

Initial data surface ¥, Riemannian metric g;, i,j=1,...n,
symmetric tensor Kj; (“initial time derivative of the metric”)
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Spacelike constraint equations

Initial data surface ¥, Riemannian metric g;, i,j=1,...n,
symmetric tensor Kj; (“initial time derivative of the metric”) the

scalar constraint equation (A is the cosmological constant):

R(gj) = 16#Fg0 + 2\ + |K|? — (trK)? ,
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Spacelike constraint equations

Initial data surface ¥, Riemannian metric g;, i,j=1,...n,
symmetric tensor Kj; (“initial time derivative of the metric”) the

scalar constraint equation (A is the cosmological constant):

R(gj) = 16#Fg0 + 2\ + |K|? — (trK)? ,

and the vector constraint equation:

DjKjk — Dkij =8»F5 .
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Spacelike constraint equations

Initial data surface ¥, Riemannian metric g;, i,j=1,...n,
symmetric tensor Kj; (“initial time derivative of the metric”) the

scalar constraint equation (A is the cosmological constant):

R(gj) = 16#Fg0 + 2\ + |K|? — (trK)? ,

and the vector constraint equation:

DiKiy — DyKI; = 8=Fer .

good or bad?

Zo unversiat
<. wien
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Gluing method

Nonlinear “superpositions”

@ In linear theories, new initial data can be
obtained by adding old ones

Alternative
approach:

gluing
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Gluing method

Nonlinear “superpositions”

@ In linear theories, new initial data can be
obtained by adding old ones

@ This is not possible in general relativity Alternative
because the constraint equations are approach:
nonlinear .

gluing
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Gluing method

Nonlinear “superpositions”

@ In linear theories, new initial data can be
obtained by adding old ones

@ This is not possible in general relativity Alternative
because the constraint equations are approach:
nonlinear .

gluing

@ Corvino and Schoen (~ 2000) have invented
a method, where nearby solutions can be —
glued together to a new one (“gluing”) -
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Gluing method

Nonlinear “superpositions”

In linear theories, new initial data can be
obtained by adding old ones

This is not possible in general relativity Alternative
because the constraint equations are approach:
nonlinear

luin
Corvino and Schoen (~ 2000) have invented guing

a method, where nearby solutions can be
glued together to a new one (“gluing”)

The method exploits in a clever and sophisticated
way the “underdetermined elliptic character” (the
symbol of the linearized operator is surjective) of
the constraint equations
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Gluing method

Nonlinear “superpositions”

In linear theories, new initial data can be
obtained by adding old ones

This is not possible in general relativity
because the constraint equations are
nonlinear

Corvino and Schoen (~ 2000) have invented
a method, where nearby solutions can be
glued together to a new one (“gluing”)

The method exploits in a clever and sophisticated
way the “underdetermined elliptic character” (the
symbol of the linearized operator is surjective) of
the constraint equations and functional spaces
with degenerating weights

6 functions gj
6 functions Kj;
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choice of
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Mao-Tao’s version of the Corvino-Schoen gluing

Simplified proof;

e In the traceless gauge, the linearised prescribed scalar
constraint equation at the Euclidean metric is

SR = 00,07 = .

> wiversitat
_wien

Piotr T. Chrusciel MGR



Mao-Tao’s version of the Corvino-Schoen gluing

Simplified proof;

e In the traceless gauge, the linearised prescribed scalar
constraint equation at the Euclidean metric is

SR = 00,07 = .

o first trick: the double-divergence operator has a fundamental
solution supported on an annulus, up to a spherically
symmetric tail
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Mao-Tao’s version of the Corvino-Schoen gluing

Simplified proof;

e In the traceless gauge, the linearised prescribed scalar
constraint equation at the Euclidean metric is

SR = 00,07 = .

o first trick: the double-divergence operator has a fundamental
solution supported on an annulus, up to a spherically
symmetric tail
e second trick (inspired by Czimek-Rodnianski), involving a
clever linearised solution of the vacuum constraints, one
obtains:

Theorem (Mao, Oh, Tao (2023))

An asymptotically flat initial data set can be glued to any Kerr
(possibly Schwarzschild) with longer energy-momentum vector
rwWien
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Mao-Tao’s version of the Corvino-Schoen gluing

Simplified proof; the original Corvino & Schoen theorem: to some nearby Kerr

e In the traceless gauge, the linearised prescribed scalar
constraint equation at the Euclidean metric is

SR = 00,07 = .

o first trick: the double-divergence operator has a fundamental
solution supported on an annulus, up to a spherically
symmetric tail
e second trick (inspired by Czimek-Rodnianski), involving a
clever linearised solution of the vacuum constraints, one
obtains:

Theorem (Mao, Oh, Tao (2023))

An asymptotically flat initial data set can be glued to any Kerr
(possibly Schwarzschild) with longer energy-momentum vector
rwWien
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Screening the gravitational field

Carlotto-Schoen “exotic gluings” (2014)

@ Remove a solid cone Cy from Euclidean
space; initial data (R", g = 4, Kjj = 0)
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Screening the gravitational field

Carlotto-Schoen “exotic gluings” (2014)

@ Remove a solid cone Cy from Euclidean
space; initial data (R", g = 4, Kjj = 0)

@ Remove a slightly larger cone C, from an
asymptotically flat initial data set (M, gy, Kj)
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Screening the gravitational field

Carlotto-Schoen “exotic gluings” (2014)

@ Remove a solid cone Cy from Euclidean
space; initial data (R", g = 4, Kjj = 0)

@ Remove a slightly larger cone C, from an
asymptotically flat initial data set (M, gy, Kj)

Theorem (Carlotto and Schoen)

If the tip of Cy is sufficiently far away there exists
an initial data set which coincides with (M, gj;, Kj;)
outside of Co and has Minkowskian data on C4
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Screening the gravitational field

Carlotto-Schoen “exotic gluings” (2014)

@ Remove a solid cone Cy from Euclidean
space; initial data (R", g = 4, Kjj = 0)

@ Remove a slightly larger cone C, from an
asymptotically flat initial data set (M, gy, Kj)

Theorem (Carlotto and Schoen)

If the tip of Cy is sufficiently far away there exists
an initial data set which coincides with (M, gj;, Kj;)
outside of Co and has Minkowskian data on C4

Mao, Tao, arXiv:2210.09437: can be done with
optimal 1/r decay using a Green function for 6R
supported in a cone.
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Applications of spacelike gluing:

Gluing-in small black holes with A = 0

Theorem (Peter Hintz, arXiv:2210.13960)

Let (X, g, K) be a vacuum initial data set and suppose that
there are no Killing vectors near p € .. For every e > 0
sufficiently small there exists a vacuum initial data set which
coincides with (g, K) outside an e-neighborhood of p and
coincides with a small Kerr black hole inside the neighborhood.
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Applications of spacelike gluing:
Gluing-in small black holes with A = 0; the Hintz black hole sprinkler (compare
Anderson, Corvino, Pasqualotto arXiv:2301.08238)

Theorem (Peter Hintz, arXiv:2210.13960)

Let (X, g, K) be a vacuum initial data set and suppose that
there are no Killing vectors near p € .. For every e > 0
sufficiently small there exists a vacuum initial data set which
coincides with (g, K) outside an e-neighborhood of p and
coincides with a small Kerr black hole inside the neighborhood.

This can be done all over the place
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Asymptotic gluing:

Gluing-in black holes with A > 0 (P. Hintz, arXiv:2001.10401)

Theorem 1.1. Let N € N. Fori = 1,...,N, fix points p; € OM = S* C R* and
(subextremal) masses 0 < m; < (3A)~Y/2 such that the balance condition
N
Zmipi =0¢ R4. (1.2)
i=1
holds. Then there exists a metric g solving the Einstein vacuum equation (1.1) in a neigh-
borhood of OM with the following properties:
(1) in a neighborhood of pi, g is isometric to a Schwarzschild-de Sitter black hole metric
with mass m;, containing future affine complete event and cosmological horizons;
(2) outside a small neighborhood of {p1,...,pn}, cos?(s)g is smooth down to s = /2,
and asymptotic to the rescaled de Sitter metric cos?(s)gas at the rate cos®(s).

FIGURE 1.2. Tllustration of Theorem 1.1. We glue SdS black holes into wiversitat
neighborhoods of the points p;; only two black holes are shown here. The = wien
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Characteristic Cauchy problem

Characteristic gluing
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Characteristic gluing
The Aretakis-Czimek-Rodnianski gluing

QUESTION (Aretakis, Czimek and Rodnianski (2021))

Can you find vacuum characteristic initial data interpolating
between two characteristic initial data sets?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski
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Characteristic gluing
The Aretakis-Czimek-Rodnianski gluing

QUESTION (Aretakis, Czimek and Rodnianski (2021))

Can you find vacuum characteristic initial data interpolating
between two characteristic initial data sets?

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

Answer: “kind of”, with obstructions, for data near o wniversitat
, o ./ wien
a 3+1 Minkowskian light cone E
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ACR gluing

Characteristic gluing: implicit function theorem together with

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02449)

The C? linearised characteristic gluing at (3 + 1)-Minkowski is
solvable up to a 10-dimensional space of obstructions.

(3 + 1)-Minkowski: cross-section S ~ S, A=0=m
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ACR gluing

differentiability? A? General topologies? higher dimensions?

Characteristic gluing: implicit function theorem together with

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02449)

The C? linearised characteristic gluing at (3 + 1)-Minkowski is
solvable up to a 10-dimensional space of obstructions.

(3 + 1)-Minkowski: cross-section S ~ S, A=0=m
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ACR gluing

differentiability? A? General topologies? higher dimensions?
Characteristic gluing: implicit function theorem together with

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02449)

The C? linearised characteristic gluing at (3 + 1)-Minkowski is
solvable up to a 10-dimensional space of obstructions.

(3 + 1)-Minkowski: cross-section S ~ S, A=0=m

Theorem (PTC, Wan Cong and Finnian Gray, in preparation)

The CK linearised characteristic gluing at (n + 1)-Birmingham -
Kottler is solvable up to a finite-dimensional space of
obstructions.

(n+ 1)-Birmingham - Kottler: cross-section S compact Einstein . ..
. wiversitat
spaces e.g. spheres, torus, higher genus; A € R, me R.. wien
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General topologies, higher dimensions, differentiability

Work in progress with Wan Cong and Finnian Gray

Obstructions arise from kernels of linear elliptic operators on
the cross-section S of the characteristic hypersurface; affected
by dimension and topology of S, e.g.:

C?-gluingwithm=0,A=0 [ S [ T? | §*
dim. of obstruction space | 10 | 7 | 30
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General topologies, higher dimensions, differentiability

Work in progress with Wan Cong and Finnian Gray

Obstructions arise from kernels of linear elliptic operators on
the cross-section S of the characteristic hypersurface; affected
by dimension and topology of S, e.g.:

C?-gluingwithm=0,A=0 [ S [ T? | §*
dim. of obstruction space | 10 | 7 | 30

Both a non-vanishing mass m and a non-zero cosmological
constant N\ provide additional degrees of freedom to remove
some of the obstructions, e.g.:

=0] S, m+#0 S, m#0
144 4 1+dim KV of S

Ckgluing | S, m=0| %, m
obstr. k=3:20 | k=4
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ACR gluings: applications

“No third law”

CONJECTURE (“third law of black hole dynamics”, Bardeen, Carter
& Hawking (1973))

A black hole with zero surface-gravity cannot be formed in a
dynamical process.
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ACR gluings: applications

“No third law”

CONJECTURE (“third law of black hole dynamics”, Bardeen, Carter
& Hawking (1973))

A black hole with zero surface-gravity cannot be formed in a
dynamical process.

zero surface-gravity ~ zero temperature
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ACR gluings: applications

“No third law”

CONJECTURE (“third law of black hole dynamics”, Bardeen, Carter
& Hawking (1973))

A black hole with zero surface-gravity cannot be formed in a
dynamical process.

zero surface-gravity ~ zero temperature

Theorem (Kehle & Unger, arXiv:2211.15742)

The third law is wrong for spherically symmetric solutions of the
Einstein-Maxwell-charged-scalar-field equations.
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ACR gluings: applications

“No third law”

CONJECTURE (“third law of black hole dynamics”, Bardeen, Carter
& Hawking (1973))

A black hole with zero surface-gravity cannot be formed in a
dynamical process.

zero surface-gravity ~ zero temperature

Theorem (Kehle & Unger, arXiv:2211.15742)

The third law is wrong for spherically symmetric solutions of the
Einstein-Maxwell-charged-scalar-field equations.

Proof: use null gluing to an extreme Reissner-Nordstrom black
hole. —o wniversitat
_Jwien
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455 )

Black holes can be formed in vacuum by focusing of
gravitational waves.
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455 )

Black holes can be formed in vacuum by focusing of
gravitational waves.

Proof: null gluing of a Minkowskian light-cone to a Kerr black
hole
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455,

Black holes can be formed in vacuum by focusing of
gravitational waves.

Proof: null gluing of a Minkowskian light-cone to a Kerr black
hole

Previous work: Christodoulou (2008), arXiv:0805.3880, 594
pages & Li and Yu (2015) 70 pages
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ACR gluings: applications
Optimal asymptotics

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02456)

The Carlotto-Schoen gluing can be done with optimal 1/r decay.
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ACR gluings: applications
Optimal asymptotics

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02456)

The Carlotto-Schoen gluing can be done with optimal 1/r decay
in the region between the cones.
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ACR gluings: applications
Optimal asymptotics

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02456)

The Carlotto-Schoen gluing can be done with optimal 1/r decay
in the region between the cones.

precedes the already-mentioned Mao & Tao, arXiv:2210.09437
(alternative simple proof of the Carlotto-Schoen theorem,
including optimal decay)
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ACR gluings: applications

“Obstruction-free gluing”

Theorem (Czimek & Rodnianski, arXiv:2210.09663)

Asymptotically flat initial data with mass m can be deformed, at
large distances, to Kerr data with any mass larger than m, same
momentum, and with arbitrary remaining asymptotic charges.
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ACR gluings: applications

“Obstruction-free gluing”

Theorem (Czimek & Rodnianski, arXiv:2210.09663)

Asymptotically flat initial data with mass m can be deformed, at
large distances, to Kerr data with any mass larger than m, same
momentum, and with arbitrary remaining asymptotic charges.

Remaining asymptotic charges: angular momentum and center
of mass.
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ACR gluings: applications

“Obstruction-free gluing”

Theorem (Czimek & Rodnianski, arXiv:2210.09663)

Asymptotically flat initial data with mass m can be deformed, at
large distances, to Kerr data with any mass larger than m, same
momentum, and with arbitrary remaining asymptotic charges.

Remaining asymptotic charges: angular momentum and center
of mass.

The positive energy theorem prevents one to glue Minkowskian
data to data with smaller mass
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ACR gluings: applications

“Obstruction-free gluing”

Theorem (Czimek & Rodnianski, arXiv:2210.09663)

Asymptotically flat initial data with mass m can be deformed, at
large distances, to Kerr data with any mass larger than m, same
momentum, and with arbitrary remaining asymptotic charges.

Remaining asymptotic charges: angular momentum and center
of mass.

The positive energy theorem prevents one to glue Minkowskian
data to data with smaller mass

precedes the already-mentioned proof by Mao, Oh and Tao
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Global charges
The Penrose inequality
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Penrose inequality

3d, with optimal asymptotics: Benatti, Fogagnolo, Mazzieri, arXiv:2212.10215

Let (M, g) be a complete C!-asymptotically flat Riemannian
3-manifold, T > 1/2, with nonnegative scalar curvature and
smooth, compact, minimal, connected and outermost
boundary. Then,

Cp(OM)T5 < 2m (0.4)

forany1 < p < 2. Letting p — 1" one obtains

|OM|
— < m. .
6r = m (0.5)
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Penrose inequality

3d, with optimal asymptotics: Benatti, Fogagnolo, Mazzieri, arXiv:2212.10215

Let (M, g) be a complete C!-asymptotically flat Riemannian
3-manifold, T > 1/2, with nonnegative scalar curvature and
smooth, compact, minimal, connected and outermost
boundary. Then,

Cp(OM)T5 < 2m (0.4)

forany1 < p < 2. Letting p — 1" one obtains

|OM|
— < m. .
1670 — m (0.5)

v

. 1 p— 1 p1 p %)
Co(K) = inf {E <3—p> /M\K |Dv| ’V € G (M), v = 1’Onﬁ§%rsitét
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The proof; u solves the p-Laplace equation

Agostiniani, Mantegazza, Mazzieri, Oronzio’s version (arXiv:2205.11642) of an identity

of Kijowski (~ 1982); see also Hirsch, Stern, Bray, Khuri, Kazaras 2102.11421,
1911.06754

¢y P|Vu p—1 x
div X = bl |p71 IVl ~ R
3-p 3-p Cg 2
[,ﬁ (1- U)] N
use Gauss-Bonnet on level sets of u
|[VX[Vu[> R |
|Vul? 2 2
~~—
>0
2
5-— Vu H
pozpf e (0.6)
P p7(1-u)
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The vector field X

cSF { IVulP2vu  VIVul - @5 Vu
5! SR(1-u)
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