Carrollian and Galilean limits of deformed symmetries in 3D gravity

Tomasz Trześniewski*
Institute of Theoretical Physics, University of Wrocław, Poland

September 5, 2023
*T. T., arXiv:2306.05409 [hep-th]
Kowalski-Glikman, Lukierski \& T. T., JHEP 09, 096 (2020)

Outline:

(2) Kinematical algebras, r-matrices and quantum contractions

- Classical Carrollian and Galilean symmetries
- Deriving their coboundary deformations

3 Pictorial overview of (almost) all (coboundary) deformations

- Comparing with the classifications of r-matrices
- Carrollian and Galilean cases

Outline:

(1) Introduction
(2) Kinematical algebras, r-matrices and quantum contractions

- Classical Carrollian and Galilean symmetries
- Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations

- Comparing with the classifications of r-matrices
- Carrollian and Galilean cases

Outline:

(1) Introduction
(2) Kinematical algebras, r-matrices and quantum contractions

- Classical Carrollian and Galilean symmetries
- Deriving their coboundary deformations
(3) Pictorial overview of (almost) all (coboundary) deformations
- Comparing with the classifications of r-matrices
- Carrollian and Galilean cases

Context and motivation

Landscape of spacetime symmetries:

- Kinematical algebras, e.g. Poincaré, Carroll and Galilei; also their (central) extensions, e.g. Bargmann
- Asymptotic-symmetry algebras, e.g. BMS (and extensions); also their non-Lorentzian versions, e.g. BMS-Carroll and BMS-Galilei
- Quantum (Hopf-algebraic) deformations of both kinds of algebras, e.g. κ-Poincaré, as well as e.g. κ-BMS ext
- Non-Lorentzian versions of the latter, e.g. κ-Carroll and κ-Galilei

In 2+1 dimensions, with the cosmological constant \wedge :

- Recently completed classification of (quantum) deformations
- The cases of $\Lambda \neq 0$ and $\Lambda=0$ related by quantum contractions ${ }^{a}$
- Such deformations arise in the classical theory of $(2+1)$ d gravity

[^0]
Non-Lorentzian kinematics (in any dimension)

Carrollian symmetries:

- Associated with the Carroll (or ultrarelativistic) limit $c \rightarrow 0$
- Ultralocality - trivial dynamics of free particles
- Two Carroll limits of GR: "electric" and "magnetic"
- Strong-gravity expansion, BKL conjecture, asymptotic silence ${ }^{a}$
- Symmetries of null hypersurfaces one dimension higher
- Black-hole horizons, plane gravitational waves
- BMS group \cong a conformal extension of Carroll group
${ }^{2}$ Mielczarek \& T. T., PRD 96, 024012 (2017)

Galilean symmetries:

- Associated with the Galilei (or "nonrelativistic") limit $c \rightarrow \infty$
- Weak-gravity expansion, gravitational waves research
- Algebraic/geometric structures "dual" to the Carrollian ones

Lorentz, Carroll and Galilei in $(2+1) d$

The brackets of Poincaré and (anti-)de Sitter algebras in (2+1)d can be written in a unified fashion (with $\Lambda=0, \Lambda<0$ or $\Lambda>0$):

$$
\begin{align*}
& {\left[J_{0}, K_{a}\right]=\epsilon_{a}^{b} K_{b}, \quad\left[K_{1}, K_{2}\right]=-J_{0}, \quad\left[J_{0}, P_{a}\right]=\epsilon_{a}^{b} P_{b}, \quad\left[J_{0}, P_{0}\right]=0,} \\
& {\left[K_{a}, P_{b}\right]=\delta_{a b} P_{0}, \quad\left[K_{a}, P_{0}\right]=P_{a}, \quad\left[P_{1}, P_{2}\right]=\Lambda J_{0}, \quad\left[P_{0}, P_{a}\right]=-\Lambda K_{a} .} \tag{1}
\end{align*}
$$

Denoting $J:=J_{0}, T_{a}:=P_{a}$ and rescaling $Q_{a}:=c K_{a}, T_{0}:=c P_{0}$, we take the limit $c \rightarrow 0$ to obtain Carroll / (anti-)de Sitter-Carroll algebra:

$$
\begin{align*}
{\left[J, Q_{a}\right] } & =\epsilon_{a}^{b} Q_{b}, & {\left[Q_{1}, Q_{2}\right]=0, } & {\left[J, T_{a}\right]=\epsilon_{a}^{b} T_{b}, }
\end{align*} \quad\left[J, T_{0}\right]=0, ~ 子, ~\left[T_{a}, T_{0}\right]=\Lambda Q_{a} .
$$

If we denote $J:=J_{0}, T_{0}:=P_{0}$ and rescale $Q_{a}:=c^{-1} K_{a}, T_{a}:=c^{-1} P_{a}$, the limit $c \rightarrow \infty$ leads to Galilei / (anti-)de Sitter-Galilei algebra:

$$
\begin{align*}
{\left[J, Q_{a}\right] } & =\epsilon_{a}^{b} Q_{b}, & {\left[Q_{1}, Q_{2}\right] } & =0, & {\left[J, T_{a}\right] } & =\epsilon_{a}^{b} T_{b},
\end{align*} \quad\left[J, T_{0}\right]=0, ~ 子, ~\left[T_{a}, T_{0}\right]=\Lambda Q_{a} .
$$

Quantum deformations of relativistic symmetries

Instead of breaking the symmetries, one may deform them. The best studied example is given by the κ-Poincaré algebra, which (in $(2+1) \mathrm{d}$) differs from the ordinary Poincaré algebra by the brackets

$$
\begin{equation*}
\left[K_{1}, K_{2}\right]=-\cosh \left(P_{0} / \kappa\right) J_{0}, \quad\left[K_{a}, P_{b}\right]=\kappa \sinh \left(P_{0} / \kappa\right) \delta_{a b} \tag{4}
\end{equation*}
$$

with the deformation parameter $\kappa \in \mathbb{R}_{+}$; the classical limit is $\kappa \rightarrow+\infty$.

Such a deformed algebra is actually a Hopf algebra \mathcal{H}, generalizing a (Lie) algebra $U(\mathfrak{g})$ and equipped not only with the Lie bracket (product) [,]: $\mathcal{H} \otimes \mathcal{H} \mapsto \mathcal{H}$ but also the coproduct and the antipode:

$$
\begin{equation*}
\Delta: \mathcal{H} \mapsto \mathcal{H} \otimes \mathcal{H}, \quad S: \mathcal{H} \mapsto \mathcal{H} \tag{5}
\end{equation*}
$$

which satisfy certain consistency conditions.

Coboundary deformations and r-matrices

If a deformation is coboundary, the coproduct of any $x \in \mathfrak{g}$ can be expanded with respect to its deformation parameters $\left\{q_{i}\right\}$ as

$$
\Delta\left(x ; q_{i}\right)=\Delta_{0}(x)+\left[r, \Delta_{0}(x)\right]+\mathcal{O}\left(q_{i}^{2}\right), \quad \Delta_{0}(x)=x \otimes 1+1 \otimes x,(6)
$$

where $r \in \mathfrak{g} \wedge \mathfrak{g}$ is the so-called (antisymmetric) classical r-matrix and is actually an equivalence class with respect to automorphisms of \mathfrak{g}. Moreover, r is a solution of the classical Yang-Baxter equation

$$
\begin{equation*}
[[r, r]]=t \Omega, \quad \Omega \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}, \quad t \in \mathbb{C} \tag{7}
\end{equation*}
$$

where Ω is \mathfrak{g}-invariant and [[, ,]] denotes Schouten bracket. (r-matrix is called quasitriangular if $t \neq 0$, or triangular if $t=0$.)

Quantum contractions and deformation parameters

To perform a (quantum) contraction of a quantum-deformed algebra, one not only needs to rescale the appropriate generators but also each deformation parameter q is rescaled to:

$$
\begin{equation*}
\hat{q}:=q / \omega^{2} \quad \text { or } \quad \tilde{q}:=q / \omega \quad \text { or } \quad q=q ; \tag{8}
\end{equation*}
$$

with $\omega=|\Lambda|$ for $\Lambda \rightarrow 0$, and $\omega=c$ for $c \rightarrow 0$, and $\omega=c^{-1}$ for $c \rightarrow \infty$.
Technical subtleties:

- linear redefinitions of parameters before the rescaling,
- transformation by a suitable automorphism may lead to an inequivalent contraction limit,
- a r-matrix is determined up to an "antisymmetric split-Casimir", i.e. such $\mathcal{C}_{\mathrm{s}} \in \mathfrak{g} \wedge \mathfrak{g}$ that $\forall x \in \mathfrak{g}:\left[x \otimes 1+1 \otimes x, \mathcal{C}_{\mathrm{s}}\right]=0$.

Classifications of deformations vs their contractions

Semisimple or inhomogeneous-(pseudo)orthogonal algebras have only coboundary deformations, which can be completely classified in terms of r-matrices. This has been achieved for 2+1-dimensional algebras:

- Poincaré (as well as Euclidean) ${ }^{\text {a }}$,
- (anti-)de Sitter ${ }^{\text {b }}$,
- (anti-)de Sitter-Carroll (isomorphisms with Poincaré/Euclidean) ${ }^{\text {c }}$.

Quantum contractions of (anti-)de Sitter r-matrices in the limit:

- $\Lambda \rightarrow 0$, leading to Poincaréd ,
- $c \rightarrow 0$, leading to (a)dS-Carroll ${ }^{c}$,
recover all r-matrix classes for a given target algebra, up to a few missing terms in some classes.

[^1]
Deformations of Poincaré and (a)dS algebras

Figure: Quantum $\wedge \rightarrow 0$ contractions relating all r-matrices for (anti-)de Sitter and Poincaré algebras; a two-headed arrow means that a given contraction recovers the full class; double arrows denote automorphisms.

Deformations of Carroll and Galilei algebras

We derived the Carrol//Galilei r-matrices by quantum $c \rightarrow 0 / c \rightarrow \infty$ contractions of the Poincaré ones. Possibly, some deformations can not be obtained in this way. There may also exist non-coboundary deformations of these algebras ${ }^{\text {a }}$.

Figure: Quantum $c \rightarrow 0 / c \rightarrow \infty$ contractions relating all r-matrices for Poincaré with those obtained for Carroll/Galilei algebra; a dashed line means that a given contraction leads to a subclass.

[^2]
Deformations of (a)dS, (a)dSC and Carroll algebras

Figure: Quantum $c \rightarrow 0$ and $\Lambda \rightarrow 0$ contractions relating all r-matrices for (anti-)de Sitter and (a)dS-Carroll, and those obtained for Carroll algebra; a two-headed arrow means that a $c \rightarrow 0$ contraction recovers the full class.

Complete classification for (a)dSC is obtained via isomorphisms with Poincaré/Euclidean algebras.

Deformations of (a)dS, (a)dSG and Galilei algebras

Figure: Quantum $c \rightarrow \infty$ and $\wedge \rightarrow 0$ contractions relating all r-matrices for (anti-)de Sitter with those obtained for (a)dS-Galilei and Galilei algebras; a dashed line means that a $c \rightarrow \infty$ contraction leads to a subclass.

Possibly, not all deformations of (a)dSG can be obtained by contractions and there may also exist non-coboundary ones.

Summary - special cases of deformations

The cases of particular interest are time- and spacelike κ-deformations, and the Lorentz double. They also survive under (almost) all quantum contractions ($\Lambda \rightarrow 0, c \rightarrow 0$, or $c \rightarrow \infty$) for both $\Lambda>0$ and $\Lambda<0$.

algebra	timelike κ-deformation	spacelike κ-deformation	Lorentz double
dSC	$r_{C I I I}(\tilde{\gamma}+) \cong r_{\prime^{\prime}}(\gamma)$	$r_{C I I I}\left(\hat{\gamma}_{-}\right) \cong r_{1^{\prime}}\left(\theta_{12}\right)$	$r_{C I V}(\tilde{\gamma}) \cong r_{2^{\prime}}(\gamma)$
Carroll	$r_{C 3}(\tilde{\gamma})$	$r_{C 2}(\hat{\gamma})$	$r_{C 6}(\tilde{\gamma})$
adSC	$r_{C I I I \prime}\left(\tilde{\gamma}_{+}\right) \cong r_{3^{\prime}}(\gamma)$	$r_{C I I I}\left(\hat{\gamma}_{+}\right) \cong r_{2^{\prime}}\left(\theta_{20}\right)$	$r_{C I V a}(\tilde{\gamma}) \cong r_{7^{\prime}}(\gamma)$
dS	$r_{I I I}\left(\gamma_{+}\right)$	$r_{I I I}\left(\gamma_{-}\right) \cong r_{I I I}\left(\gamma_{-}\right)$	$r_{I V}(2 \gamma=\varsigma)$
Poincaré	$r_{3}(\gamma)$	$r_{2}(\gamma)$	$r_{7}(\gamma)$
adS	$r_{I I I^{\prime}}\left(\gamma_{+}\right) \cong r_{I I I \prime}\left(\gamma_{-}\right)$	$r_{I I I}\left(\gamma_{+}\right) \cong r_{I I I}\left(\gamma_{-}\right)$	$r_{I V}(2 \gamma=-\varsigma)$
dSG	0	$r_{G I I I a}\left(\tilde{\gamma}_{-}\right)$	$r_{G / V a}(2 \hat{\gamma}=-\hat{\varsigma})$
Galilei	0	$r_{G 2}(\tilde{\gamma})$	$r_{G 6}(\hat{\gamma}=\hat{\varsigma})$
adSG	0	$r_{G I I I}\left(\tilde{\gamma}_{+}\right) \cong r_{G I I I}\left(\tilde{\gamma}_{-}\right)$	$r_{G I V}(2 \hat{\gamma}=-\hat{\varsigma})$

Table: r-matrices (only $\neq 0$ parameters shown) that characterize the above cases of deformations, depending on a kinematical algebra.

Why para-Euclidean and para-Poincaré?

Let us also show the brackets of (inhomogeneous) Euclidean algebra:

$$
\begin{array}{llll}
{\left[J_{3}, K_{a}\right]=\epsilon_{a}^{b} K_{b},} & {\left[K_{1}, K_{2}\right]=J_{3},} & {\left[J_{3}, P_{a}\right]=\epsilon_{a}^{b} P_{b},} & {\left[J_{3}, P_{3}\right]=0,} \\
{\left[K_{a}, P_{b}\right]=-\delta_{a b} P_{3},} & {\left[K_{a}, P_{3}\right]=P_{a},} & {\left[P_{1}, P_{2}\right]=0,} & {\left[P_{3}, P_{a}\right]=0 .} \tag{9}
\end{array}
$$

It describes different kinematics but is related by the isomorphism

$$
\begin{equation*}
K_{a} \mapsto \Lambda^{-1 / 2} T_{a}, \quad P_{a} \mapsto \Lambda^{1 / 2} Q_{a}, \quad J_{3} \mapsto J, \quad P_{3} \mapsto T_{0} \tag{10}
\end{equation*}
$$

with de Sitter-Carroll algebra, hence called the "para-Euclidean". Meanwhile, Poincaré algebra is mathematically related by the isomorphism

$$
\begin{equation*}
K_{a} \mapsto|\Lambda|^{-1 / 2} T_{a}, \quad P_{a} \mapsto-|\Lambda|^{1 / 2} Q_{a}, \quad J_{0} \mapsto J, \quad P_{0} \mapsto T_{0} \tag{11}
\end{equation*}
$$

with anti-de Sitter-Carroll algebra, hence called the "para-Poincaré".
Moreover, the name "expanding/oscillating Newton-Hooke" is sometimes used for dS-Galilei/adS-Galilei algebra.

Quantum contractions vs automorphisms

If we transform a deformed algebra by a suitable automorphism, this may lead to a separate contraction limit, e.g. two representatives of the r-matrix class $r_{I V}$ for anti-de Sitter algebra

$$
\begin{align*}
& r_{I V}(\gamma, \varsigma)=\gamma\left(J_{0} \wedge K_{2}-P_{0}^{\prime} \wedge P_{1}^{\prime}-K_{1} \wedge P_{2}^{\prime}\right)-\frac{\varsigma}{2}\left(J_{0}-P_{1}^{\prime}\right) \wedge\left(K_{2}+P_{0}^{\prime}\right) \\
& r_{I V}^{a}(\gamma, \varsigma)=-\gamma\left(J_{0} \wedge P_{1}^{\prime}+K_{2} \wedge P_{0}^{\prime}+K_{1} \wedge P_{2}^{\prime}\right)+\frac{\varsigma}{2}\left(J_{0}-K_{2}\right) \wedge\left(P_{0}^{\prime}+P_{1}^{\prime}\right) \tag{12}
\end{align*}
$$

($P_{\mu}^{\prime} \equiv|\Lambda|^{-1 / 2} P_{\mu}$) are equivalent but their Carrollian contraction limits

$$
\begin{align*}
r_{C I V}(\tilde{\gamma}, \tilde{\varsigma}) & =\tilde{\gamma}\left(J \wedge Q_{2}-T_{0}^{\prime} \wedge T_{1}^{\prime}-Q_{1} \wedge T_{2}^{\prime}\right)-\frac{\tilde{\varsigma}}{2}\left(J-T_{1}^{\prime}\right) \wedge\left(Q_{2}+T_{0}^{\prime}\right), \\
r_{C I V a}(\tilde{\gamma}, \hat{\gamma}) & =-\tilde{\gamma}\left(J \wedge T_{0}^{\prime}+Q_{1} \wedge T_{2}^{\prime}-Q_{2} \wedge T_{1}^{\prime}\right)-\hat{\gamma} Q_{2} \wedge T_{0}^{\prime} \\
& \cong-\tilde{\gamma}\left(J \wedge T_{0}^{\prime}+Q_{1} \wedge T_{2}^{\prime}-Q_{2} \wedge T_{1}^{\prime}\right)=r_{C I V a}(\tilde{\gamma}) \tag{13}
\end{align*}
$$

($T_{\mu}^{\prime} \equiv|\Lambda|^{-1 / 2} T_{\mu}$), describing deformations of adSC algebra, are not. The corresponding automorphism of adS is not inherited by adSC. Automorphisms yield additional contraction limits also for dS-Galilei.

Trivialized/reduced deformations - examples

A classical r-matrix is determined up to an antisymmetric split-Casimir, i.e. such $\mathcal{C}_{s} \in \mathfrak{g} \wedge \mathfrak{g}$ that $\forall_{x \in \mathfrak{g}}:\left[x \otimes 1+1 \otimes x, \mathcal{C}_{\mathrm{s}}\right]=0$. We find that Galilei algebra has an antisymmetric split-Casimir

$$
\begin{equation*}
\mathcal{C}_{\mathrm{s} 1}:=Q_{1} \wedge T_{1}+Q_{2} \wedge T_{2} \tag{14}
\end{equation*}
$$

while (anti-)de Sitter-Galilei algebra has both (14) and

$$
\begin{equation*}
\mathcal{C}_{\mathrm{s} 2}:=Q_{1} \wedge Q_{2}-\Lambda^{-1} T_{1} \wedge T_{2} . \tag{15}
\end{equation*}
$$

The quantum contraction limits are simplified by dropping such terms. Incidentally, the r-matrix (14) describes timelike κ-deformation.

Spacelike κ-deformation for Carroll and (a)dS-Carroll is reduced to:

$$
\begin{equation*}
r(\gamma)=\gamma\left(J_{0} \wedge P_{1}+K_{2} \wedge P_{0}\right) \quad \underset{c \rightarrow 0}{ } \quad r(\hat{\gamma})=\hat{\gamma} Q_{2} \wedge T_{0} \tag{16}
\end{equation*}
$$

Abridged definition of the Hopf algebra

A Hopf algebra A is the vector space over a field K, equipped with a product (e.g. a Lie bracket) $\nabla: A \otimes A \rightarrow A$, satisfying the associativity

$$
\begin{equation*}
\nabla \circ(\nabla \otimes \mathrm{id})=\nabla \circ(\mathrm{id} \otimes \nabla) ; \tag{17}
\end{equation*}
$$

a coproduct $\Delta: A \rightarrow A \otimes A$, satisfying the coassociativity

$$
\begin{equation*}
(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta ; \tag{18}
\end{equation*}
$$

and an antipode $S: A \rightarrow A$, satisfying the relation

$$
\begin{equation*}
\nabla \circ(S \otimes \mathrm{id}) \circ \Delta=\nabla \circ(\mathrm{id} \otimes S) \circ \Delta=\mathbb{1} . \tag{19}
\end{equation*}
$$

The tensor product of a pair of algebra representations $\left(\rho_{1}, V_{1}\right),\left(\rho_{2}, V_{2}\right)$ (where $\rho_{1,2}: A \rightarrow \operatorname{GL}\left(V_{1,2}\right)$) is given by $\left(\rho, V_{1} \otimes V_{2}\right)$, such that

$$
\begin{equation*}
\rho(a)\left(v_{1} \otimes v_{2}\right)=\left(\rho_{1} \otimes \rho_{2}\right)(\Delta(a))\left(v_{1} \otimes v_{2}\right), \tag{20}
\end{equation*}
$$

where $a \in A, v_{1,2} \in V_{1,2}$.

Example - the Hopf algebra corresponding to $r_{\text {III }}$

Denoting $H_{0} \equiv H, H_{1} \equiv \bar{H}, E_{0 \pm} \equiv E_{ \pm}, E_{1 \pm} \equiv \bar{E}_{ \pm}$and $q_{0} \equiv e^{\gamma / 2}$, $q_{1} \equiv e^{\bar{\gamma} / 2}, \theta \equiv e^{\eta / 4}$, we write down the deformed brackets

$$
\begin{equation*}
\left[H_{k}, E_{k \pm}\right]=E_{k \pm}, \quad\left[E_{k+}, E_{k-}\right]=\frac{q_{k}^{2 H_{k}}-q_{k}^{-2 H_{k}}}{q_{k}-q_{k}^{-1}} \tag{21}
\end{equation*}
$$

where $k=0,1$. In the limit $q_{k} \rightarrow 1$ it reduces to $\left[E_{k+}, E_{k-}\right]=2 H_{k}$. Meanwhile, the coproducts have the form

$$
\begin{align*}
\Delta\left(H_{k}\right) & =H_{k} \otimes 1+1 \otimes H_{k} \\
\Delta\left(E_{k \pm}\right) & =E_{k \pm} \otimes q_{k}^{H_{k}} \theta^{\mp(-1)^{k} H_{k+1}}+\theta^{ \pm(-1)^{k} H_{k+1}} q_{k}^{-H_{k}} \otimes E_{k \pm} \tag{22}
\end{align*}
$$

and antipodes

$$
\begin{equation*}
S\left(H_{k}\right)=-H_{k}, \quad S\left(E_{k \pm}\right)=-q_{k}^{ \pm 1} E_{k \pm} . \tag{23}
\end{equation*}
$$

The dual of the subalgebra of translations are spacetime coordinates

$$
\begin{equation*}
\left[X_{0}, X_{a}\right]=2 \gamma X_{a}, \quad\left[X_{a}, X_{b}\right]=0, \quad a, b=1,2 \tag{24}
\end{equation*}
$$

Poisson structure of 3D (Chern-Simons) gravity

\mathfrak{g} equipped with r becomes the Lie algebra of a Poisson-Lie group of spacetime symmetries, dual to the particle phase space. At the same time, r determines the Hopf-algebraic deformation of \mathfrak{g}, providing the quantization of the theory. The consistency with 3D gravity requires

$$
\begin{align*}
r=r_{A}+r_{S}, \quad r_{S} & =\alpha\left(P_{\mu} \otimes J^{\mu}+J^{\mu} \otimes P^{\mu}\right) \\
& +\beta\left(\Lambda J^{\mu} \otimes J_{\mu}-P^{\mu} \otimes P_{\mu}\right), \quad \alpha, \beta \in \mathbb{R} \tag{25}
\end{align*}
$$

where r_{S} corresponds to the generalized form of the inner product in Chern-Simons action ($\beta=0$ in the standard case), while r satisfies the homogeneous Yang-Baxter equation, hence r_{A} :

$$
\begin{align*}
{\left[\left[r_{A}, r_{A}\right]\right] } & =-\left[\left[r_{S}, r_{S}\right]\right] \\
& =-\left(\alpha^{2}-\wedge \beta^{2}\right)\left(\wedge J_{0} \wedge J_{1} \wedge J_{2}+\frac{1}{2} \epsilon^{\mu \nu \sigma} J_{\mu} \wedge P_{\nu} \wedge P_{\sigma}\right) \\
& -2 \alpha \beta\left(\frac{1}{2} \wedge \epsilon^{\mu \nu \sigma} J_{\mu} \wedge J_{\nu} \wedge P_{\sigma}+P_{0} \wedge P_{1} \wedge P_{2}\right) \tag{26}
\end{align*}
$$

We call such a r_{A} to be FR-compatible and classify all of them in J. Kowalski-Glikman, J. Lukierski \& T. T., JHEP 09, 096 (2020).

r-matrices of 3D (A)dS algebra relevant for gravity

Calculating the Schouten bracket $\left[\left[r_{A}, r_{A}\right]\right]$, we find that r-matrices are:

	FR-compatible $\forall \alpha, \beta$	FR-compatible for $\beta=0$	FR-compatible for $\alpha, \beta \neq 0$
$\mathfrak{o}(3,1)$	$r_{I I}, r_{I I}^{a}$	$r_{I V}, r_{I V}^{a}$	
$\dot{\mathfrak{o}}(2,2)$	$r_{I I}$	$r_{I V}$	r_{V}
$\dot{\mathfrak{j}}^{\prime}(2,2)$			$r_{I I I}$

Example - FR-compatible r-matrices of dS algebra:

$$
\begin{align*}
r_{I I I}(\gamma-\bar{\gamma}, \gamma+\bar{\gamma}, \eta ; \Lambda) & =\frac{1}{2}(\gamma-\bar{\gamma})\left(J_{1} \wedge J_{2}-\Lambda^{-1} P_{1} \wedge P_{2}\right) \\
& +\Lambda^{-1 / 2} \frac{1}{2}(\gamma+\bar{\gamma})\left(J_{1} \wedge P_{2}-J_{2} \wedge P_{1}\right)+\Lambda^{-1 / 2} \frac{\eta}{2} J_{0} \wedge P_{0} \\
r_{I I I}^{a}(\gamma-\bar{\gamma}, \gamma+\bar{\gamma}, \eta ; \Lambda) & =\Lambda^{-1 / 2} \frac{1}{2}(\gamma-\bar{\gamma})\left(J_{0} \wedge P_{2}-J_{2} \wedge P_{0}\right) \\
& +\frac{1}{2}(\gamma+\bar{\gamma})\left(J_{0} \wedge J_{2}-\Lambda^{-1} P_{0} \wedge P_{2}\right)+\Lambda^{-1 / 2} \frac{\eta}{2} J_{1} \wedge P_{1} \\
r_{I V}(\gamma, \varsigma ; \Lambda) & =\gamma\left(J_{1} \wedge J_{2}-\Lambda^{-1 / 2} J_{0} \wedge P_{0}-\Lambda^{-1} P_{1} \wedge P_{2}\right) \\
& +\frac{\varsigma}{2}\left(J_{1}-\Lambda^{-1 / 2} P_{2}\right) \wedge\left(J_{2}+\Lambda^{-1 / 2} P_{1}\right) \\
r_{I V}^{a}(\gamma, \varsigma ; \Lambda) & =\Lambda^{-1 / 2} \gamma\left(J_{0} \wedge P_{1}-J_{1} \wedge P_{0}-J_{2} \wedge P_{2}\right) \\
& +\Lambda^{-1 / 2} \frac{\varsigma}{2}\left(J_{0}-J_{1}\right) \wedge\left(P_{0}-P_{1}\right) \tag{27}
\end{align*}
$$

To be compared with P. K. Osei \& B. J. Schroers, CQG 35, 075006 (2018).

r-matrices of (A)dS algebra in the $\Lambda \rightarrow 0$ limit

Quantum IW contractions of r-matrices of (A)dS algebra lead to the following r-matrices of 3D Poincaré algebra:

r-matrix automorphism class ${ }^{\text {a }}$	$o(3,1) \downarrow$	$\dot{\dot{o}}(2,2) \downarrow$	$\dot{\mathbf{o}}^{\prime}(2,2) \downarrow$
$r_{1}=\chi\left(J_{0}+J_{1}\right) \wedge J_{2}$	r_{1}^{b}	r_{1}^{a}	
$\hat{r}_{2}=\hat{\gamma}\left(J_{0} \wedge \mathcal{P}_{2}-J_{2} \wedge \mathcal{P}_{0}\right)+\frac{1}{2} \hat{\eta} J_{1} \wedge \mathcal{P}_{1}$	$\hat{r}_{\text {III }}$	$\hat{r}_{\text {III }}$	
$\hat{r}_{3}=\hat{\gamma}\left(J_{1} \wedge \mathcal{P}_{2}-J_{2} \wedge \mathcal{P}_{1}\right)+\frac{1}{2} \hat{\eta} J_{0} \wedge \mathcal{P}_{0}$	$\hat{r}_{\text {III }}$		$\hat{r}_{\text {III }}$
$\hat{r}_{4}=\frac{1}{\sqrt{2}} \hat{\chi}\left(J_{+} \wedge \mathcal{P}_{1}-J_{1} \wedge \mathcal{P}_{+}\right)-\hat{\varsigma} J_{+} \wedge \mathcal{P}_{+}$	$\hat{r}_{1 I}^{a}$	\hat{r}_{11}^{a}	
$\hat{r}_{5}=\frac{1}{2} \hat{\chi} \hat{\nu}_{1} \wedge\left(\mathcal{P}_{0}+\mathcal{P}_{2}\right)$	\hat{r}_{1}^{a}	\hat{r}_{V}	
$\hat{f}_{6}=\hat{\gamma}\left(J_{0} \wedge \mathcal{P}_{2}-J_{2} \wedge \mathcal{P}_{0}-J_{1} \wedge \mathcal{P}_{1}\right)-\hat{\varsigma} J_{+} \wedge \mathcal{P}_{+}$	$\hat{r}_{\text {PV }}^{\text {a }}$	$\hat{r}_{\text {rea }}^{\text {a }}$	
$\hat{r}_{7}=\hat{\gamma}\left(J_{0} \wedge \mathcal{P}_{0}-J_{1} \wedge \mathcal{P}_{1}-J_{2} \wedge \mathcal{P}_{2}\right)$	$\hat{r}_{\text {IV }}$	$\hat{r}_{\text {IV }}$	

(as well as the irrelevant cases $\sim P_{\mu} \wedge P_{\nu}$), where $J_{+} \equiv \frac{1}{\sqrt{2}}\left(J_{0}+J_{2}\right)$, $P_{+} \equiv \frac{1}{\sqrt{2}}\left(P_{0}+P_{2}\right)$. Only \hat{r}_{2}, \hat{r}_{6} and \hat{r}_{7} are relevant for 3D gravity, i.e.

$$
\begin{align*}
& {\left[\left[r_{1}, r_{1}\right]\right]=\left[\left[\hat{r}_{4}, \hat{r}_{4}\right]\right]=} {\left[\left[\hat{r}_{5}, \hat{r}_{5}\right]\right]=0, } \\
& {\left[\left[\hat{r}_{3}, \hat{r}_{3}\right]\right]=\hat{\gamma}^{2} \epsilon^{\mu \nu \sigma} J_{\mu} \wedge \mathcal{P}_{\nu} \wedge \mathcal{P}_{\sigma}, } \\
& {\left[\left[\hat{r}_{2}, \hat{r}_{2}\right]\right]=\left[\left[\hat{r}_{6}, \hat{r}_{6}\right]\right]=\left[\left[\hat{r}_{7}, \hat{r}_{7}\right]\right]=-\hat{\gamma}^{2} \epsilon^{\mu \nu \sigma} J_{\mu} \wedge \mathcal{P}_{\nu} \wedge \mathcal{P}_{\sigma} . } \tag{28}
\end{align*}
$$

[^3]
[^0]: ${ }^{\text {a }}$ Kowalski-Glikman, Lukierski \& T. T., JHEP 09, 096 (2020)

[^1]: ${ }^{\text {a }}$ Stachura, JPA 31, 4555 (1998)
 ${ }^{\text {b }}$ Borowiec, Lukierski \& Tolstoy, JHEP 11, 187 (2017)
 ${ }^{\text {c }}$ T. T., arXiv:2306.05409 [hep-th]
 ${ }^{\text {d K Kowalski-Glikman, Lukierski \& T. T., JHEP 09, } 096 \text { (2020) }}$

[^2]: ${ }^{\text {a }}$ Ballesteros et al., PLB 805, 135461 (2020)

[^3]: ${ }^{\text {a P. Stachura, J. Phys. A: Math. Gen. 31, }} 4555$ (1998)

