Carrollian and Galilean limits of deformed symmetries in 3D gravity

Tomasz Trześniewski*

Institute of Theoretical Physics, University of Wrocław, Poland

September 5, 2023

*T. T., arXiv:2306.05409 [hep-th] Kowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

Outline:

2 Kinematical algebras, *r*-matrices and quantum contractions
 • Classical Carrollian and Galilean symmetries
 • Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations
 Comparing with the classifications of *r*-matrices
 Carrollian and Californ pages

Carrollian and Galilean cases

Outline:

2 Kinematical algebras, *r*-matrices and quantum contractions
 • Classical Carrollian and Galilean symmetries
 • Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations
 Comparing with the classifications of *r*-matrices

Carrollian and Galilean cases

Outline:

Kinematical algebras, *r*-matrices and quantum contractions
 Classical Carrollian and Galilean symmetries
 Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations

- Comparing with the classifications of r-matrices
- Carrollian and Galilean cases

Context and motivation

Landscape of spacetime symmetries:

- Kinematical algebras, e.g. Poincaré, Carroll and Galilei; also their (central) extensions, e.g. Bargmann
- Asymptotic-symmetry algebras, e.g. BMS (and extensions); also their non-Lorentzian versions, e.g. BMS-Carroll and BMS-Galilei
- Quantum (Hopf-algebraic) deformations of both kinds of algebras, e.g. κ-Poincaré, as well as e.g. κ-BMS_{ext}
- Non-Lorentzian versions of the latter, e.g. κ-Carroll and κ-Galilei

In 2+1 dimensions, with the cosmological constant Λ :

- Recently completed classification of (quantum) deformations
- The cases of $\Lambda \neq 0$ and $\Lambda = 0$ related by quantum contractions^a
- Such deformations arise in the classical theory of (2+1)d gravity

^aKowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

< (T) > <

Non-Lorentzian kinematics (in any dimension)

Carrollian symmetries:

- Associated with the Carroll (or ultrarelativistic) limit c
 ightarrow 0
 - Ultralocality trivial dynamics of free particles
 - Two Carroll limits of GR: "electric" and "magnetic"
 - Strong-gravity expansion, BKL conjecture, asymptotic silence^a
- Symmetries of null hypersurfaces one dimension higher
 - Black-hole horizons, plane gravitational waves
 - BMS group \cong a conformal extension of Carroll group

^aMielczarek & T. T., PRD 96, 024012 (2017)

Galilean symmetries:

- Associated with the Galilei (or "nonrelativistic") limit $c
 ightarrow \infty$
 - Weak-gravity expansion, gravitational waves research
- Algebraic/geometric structures "dual" to the Carrollian ones

< ロ > < 同 > < 回 > < 回 > .

Classical non-Lorentzian Reaching the quantum

Lorentz, Carroll and Galilei in (2+1)d

The brackets of Poincaré and (anti-)de Sitter algebras in (2+1)d can be written in a unified fashion (with $\Lambda = 0$, $\Lambda < 0$ or $\Lambda > 0$):

$$[J_0, K_a] = \epsilon_a^{\ b} K_b , \quad [K_1, K_2] = -J_0 , \quad [J_0, P_a] = \epsilon_a^{\ b} P_b , \quad [J_0, P_0] = 0 , \\ [K_a, P_b] = \delta_{ab} P_0 , \quad [K_a, P_0] = P_a , \quad [P_1, P_2] = \Lambda J_0 , \quad [P_0, P_a] = -\Lambda K_a .$$
(1)

Denoting $J := J_0$, $T_a := P_a$ and rescaling $Q_a := c K_a$, $T_0 := c P_0$, we take the limit $c \to 0$ to obtain Carroll / (anti-)de Sitter-Carroll algebra:

$$[J, Q_a] = \epsilon_a^{\ b} Q_b, \quad [Q_1, Q_2] = 0, \quad [J, T_a] = \epsilon_a^{\ b} T_b, \quad [J, T_0] = 0, [Q_a, T_b] = \delta_{ab} T_0, \quad [Q_a, T_0] = 0, \quad [T_1, T_2] = \Lambda J, \quad [T_a, T_0] = \Lambda Q_a.$$
(2)

If we denote $J := J_0$, $T_0 := P_0$ and rescale $Q_a := c^{-1}K_a$, $T_a := c^{-1}P_a$, the limit $c \to \infty$ leads to Galilei / (anti-)de Sitter-Galilei algebra:

$$[J, Q_a] = \epsilon_a{}^b Q_b, \quad [Q_1, Q_2] = 0, \qquad [J, T_a] = \epsilon_a{}^b T_b, \qquad [J, T_0] = 0, [Q_a, T_b] = 0, \qquad [Q_a, T_0] = T_a, \quad [T_1, T_2] = 0, \qquad [T_a, T_0] = \Lambda Q_a.$$
(3)

4 E N 4 E N 4 E N 4 E

Quantum deformations of relativistic symmetries

Instead of breaking the symmetries, one may deform them. The best studied example is given by the κ -Poincaré algebra, which (in (2+1)d) differs from the ordinary Poincaré algebra by the brackets

 $[K_1, K_2] = -\cosh(P_0/\kappa) J_0, \qquad [K_a, P_b] = \kappa \sinh(P_0/\kappa) \delta_{ab}, \quad (4)$

with the deformation parameter $\kappa \in \mathbb{R}_+$; the classical limit is $\kappa \to +\infty$.

Such a deformed algebra is actually a Hopf algebra \mathcal{H} , generalizing a (Lie) algebra $U(\mathfrak{g})$ and equipped not only with the Lie bracket (product) $[,]: \mathcal{H} \otimes \mathcal{H} \mapsto \mathcal{H}$ but also the coproduct and the antipode:

$$\Delta: \mathcal{H} \mapsto \mathcal{H} \otimes \mathcal{H}, \qquad S: \mathcal{H} \mapsto \mathcal{H}, \qquad (5)$$

which satisfy certain consistency conditions.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Coboundary deformations and *r*-matrices

If a deformation is coboundary, the coproduct of any $x \in \mathfrak{g}$ can be expanded with respect to its deformation parameters $\{q_i\}$ as

$$\Delta(x;q_i) = \Delta_0(x) + [r,\Delta_0(x)] + \mathcal{O}(q_i^2), \quad \Delta_0(x) = x \otimes 1 + 1 \otimes x, (6)$$

where $r \in \mathfrak{g} \land \mathfrak{g}$ is the so-called (antisymmetric) classical *r*-matrix and is actually an equivalence class with respect to automorphisms of \mathfrak{g} . Moreover, *r* is a solution of the classical Yang-Baxter equation

$$[[r, r]] = t \Omega, \qquad \Omega \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}, \quad t \in \mathbb{C},$$
(7)

where Ω is g-invariant and [[,]] denotes Schouten bracket. (*r*-matrix is called quasitriangular if $t \neq 0$, or triangular if t = 0.)

4 日本 4 周本 4 日本 4 日

Classical non-Lorentzian Reaching the quantum

Quantum contractions and deformation parameters

To perform a (quantum) contraction of a quantum-deformed algebra, one not only needs to rescale the appropriate generators but also each deformation parameter q is rescaled to:

$$\hat{\boldsymbol{q}} := \boldsymbol{q}/\omega^2$$
 or $\tilde{\boldsymbol{q}} := \boldsymbol{q}/\omega$ or $\boldsymbol{q} = \boldsymbol{q}$; (8)

with $\omega = |\Lambda|$ for $\Lambda \to 0$, and $\omega = c$ for $c \to 0$, and $\omega = c^{-1}$ for $c \to \infty$.

Technical subtleties:

- linear redefinitions of parameters before the rescaling,
- transformation by a suitable automorphism may lead to an inequivalent contraction limit,
- a *r*-matrix is determined up to an "antisymmetric split-Casimir", i.e. such C_s ∈ g ∧ g that ∀x ∈ g : [x ⊗ 1 + 1 ⊗ x, C_s] = 0.

Classifications of deformations vs their contractions

Semisimple or inhomogeneous-(pseudo)orthogonal algebras have only coboundary deformations, which can be completely classified in terms of *r*-matrices. This has been achieved for 2+1-dimensional algebras:

- Poincaré (as well as Euclidean)^a,
- (anti-)de Sitter^b,
- (anti-)de Sitter-Carroll (isomorphisms with Poincaré/Euclidean)^c.

Quantum contractions of (anti-)de Sitter *r*-matrices in the limit:

- $\Lambda \rightarrow 0$, leading to Poincaré^d,
- $c \rightarrow 0$, leading to (a)dS-Carroll^c,

recover all *r*-matrix classes for a given target algebra, up to a few missing terms in some classes.

^aStachura, JPA **31**, 4555 (1998)

^bBorowiec, Lukierski & Tolstoy, JHEP **11**, 187 (2017)

^c**T. T.**, arXiv:2306.05409 [hep-th]

^dKowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

Classifying and contracting Carrollian and Galilean

Deformations of Poincaré and (a)dS algebras

Figure: Quantum $\Lambda \rightarrow 0$ contractions relating all *r*-matrices for (anti-)de Sitter and Poincaré algebras; a two-headed arrow means that a given contraction recovers the full class; double arrows denote automorphisms.

Classifying and contracting Carrollian and Galilean

Deformations of Carroll and Galilei algebras

We derived the Carroll/Galilei *r*-matrices by quantum $c \rightarrow 0 / c \rightarrow \infty$ contractions of the Poincaré ones. Possibly, some deformations can not be obtained in this way. There may also exist non-coboundary deformations of these algebras^a.

Figure: Quantum $c \rightarrow 0 / c \rightarrow \infty$ contractions relating all *r*-matrices for Poincaré with those obtained for Carroll/Galilei algebra; a dashed line means that a given contraction leads to a subclass.

T. Trześniewski

^aBallesteros et al., PLB 805, 135461 (2020)

10/13

Classifying and contracting Carrollian and Galilean

Deformations of (a)dS, (a)dSC and Carroll algebras

Figure: Quantum $c \rightarrow 0$ and $\Lambda \rightarrow 0$ contractions relating all *r*-matrices for (anti-)de Sitter and (a)dS-Carroll, and those obtained for Carroll algebra; a two-headed arrow means that a $c \rightarrow 0$ contraction recovers the full class.

Complete classification for (a)dSC is obtained via isomorphisms with Poincaré/Euclidean algebras.

Classifying and contracting Carrollian and Galilean

Deformations of (a)dS, (a)dSG and Galilei algebras

Figure: Quantum $c \to \infty$ and $\Lambda \to 0$ contractions relating all *r*-matrices for (anti-)de Sitter with those obtained for (a)dS-Galilei and Galilei algebras; a dashed line means that a $c \to \infty$ contraction leads to a subclass.

Possibly, not all deformations of (a)dSG can be obtained by contractions and there may also exist non-coboundary ones.

Classifying and contracting Carrollian and Galilean

Summary – special cases of deformations

The cases of particular interest are time- and spacelike κ -deformations, and the Lorentz double. They also survive under (almost) all quantum contractions ($\Lambda \rightarrow 0$, $c \rightarrow 0$, or $c \rightarrow \infty$) for both $\Lambda > 0$ and $\Lambda < 0$.

algebra	timelike κ -deformation	spacelike κ -deformation	Lorentz double
dSC	$r_{CIII}(\tilde{\gamma}_+) \cong r_{1'}(\gamma)$	$r_{CIIIa}(\hat{\gamma}_{-}) \cong r_{1'}(\theta_{12})$	$r_{CIV}(\tilde{\gamma}) \cong r_{2'}(\gamma)$
Carroll	$r_{C3}(\tilde{\gamma})$	$r_{C2}(\hat{\gamma})$	$r_{C6}(\tilde{\gamma})$
adSC	$r_{CIII'}(\tilde{\gamma}_+) \cong r_{3'}(\gamma)$	$r_{CIII}(\hat{\gamma}_+) \cong r_{2'}(\theta_{20})$	$r_{CIVa}(\tilde{\gamma}) \cong r_{7'}(\gamma)$
dS	$r_{III}(\gamma_+)$	$r_{III}^{a}(\gamma_{-}) \cong r_{III}(\gamma_{-})$	$r_{IV}(2\gamma = \varsigma)$
Poincaré	$r_3(\gamma)$	$r_2(\gamma)$	$r_7(\gamma)$
adS	$r_{III'}(\gamma_+) \cong r_{III'}(\gamma)$	$r_{III}(\gamma_+) \cong r_{III}(\gamma)$	$r_{IV}(2\gamma = -\varsigma)$
dSG	0	$r_{GIIIa}(ilde{\gamma}_{-})$	$r_{GIVa}(2\hat{\gamma}=-\hat{\varsigma})$
Galilei	0	$r_{G2}(\tilde{\gamma})$	$r_{G6}(\hat{\gamma}=\hat{\varsigma})$
adSG	0	$r_{GIII}(ilde{\gamma}_+)\cong r_{GIII}(ilde{\gamma})$	$r_{GIV}(2\hat{\gamma}=-\hat{\varsigma})$

Table: *r*-matrices (only \neq 0 parameters shown) that characterize the above cases of deformations, depending on a kinematical algebra.

4 D N 4 B N 4 B N 4 B

Why para-Euclidean and para-Poincaré?

Let us also show the brackets of (inhomogeneous) Euclidean algebra:

$$\begin{bmatrix} J_3, K_a \end{bmatrix} = \epsilon_a^{\ b} K_b, \qquad \begin{bmatrix} K_1, K_2 \end{bmatrix} = J_3, \qquad \begin{bmatrix} J_3, P_a \end{bmatrix} = \epsilon_a^{\ b} P_b, \qquad \begin{bmatrix} J_3, P_3 \end{bmatrix} = 0, \\ \begin{bmatrix} K_a, P_b \end{bmatrix} = -\delta_{ab} P_3, \qquad \begin{bmatrix} K_a, P_3 \end{bmatrix} = P_a, \qquad \begin{bmatrix} P_1, P_2 \end{bmatrix} = 0, \qquad \begin{bmatrix} P_3, P_a \end{bmatrix} = 0.$$
(9)

It describes different kinematics but is related by the isomorphism

$$K_a \mapsto \Lambda^{-1/2} T_a, \quad P_a \mapsto \Lambda^{1/2} Q_a, \quad J_3 \mapsto J, \quad P_3 \mapsto T_0$$
 (10)

with de Sitter-Carroll algebra, hence called the "para-Euclidean". Meanwhile, Poincaré algebra is mathematically related by the isomorphism

$$K_a \mapsto |\Lambda|^{-1/2} T_a, \quad P_a \mapsto -|\Lambda|^{1/2} Q_a, \quad J_0 \mapsto J, \quad P_0 \mapsto T_0$$
 (11)

with anti-de Sitter-Carroll algebra, hence called the "para-Poincaré".

Moreover, the name "expanding/oscillating Newton-Hooke" is sometimes used for dS-Galilei/adS-Galilei algebra.

Quantum contractions vs automorphisms

If we transform a deformed algebra by a suitable automorphism, this may lead to a separate contraction limit, e.g. two representatives of the *r*-matrix class r_{IV} for anti-de Sitter algebra

$$r_{IV}(\gamma,\varsigma) = \gamma \left(J_0 \wedge K_2 - P'_0 \wedge P'_1 - K_1 \wedge P'_2 \right) - \frac{\varsigma}{2} \left(J_0 - P'_1 \right) \wedge \left(K_2 + P'_0 \right),$$

$$r_{IV}^a(\gamma,\varsigma) = -\gamma \left(J_0 \wedge P'_1 + K_2 \wedge P'_0 + K_1 \wedge P'_2 \right) + \frac{\varsigma}{2} \left(J_0 - K_2 \right) \wedge \left(P'_0 + P'_1 \right)$$
(12)

 $(P'_{\mu}\equiv |\Lambda|^{-1/2}P_{\mu})$ are equivalent but their Carrollian contraction limits

$$\begin{aligned} r_{CIV}(\tilde{\gamma},\tilde{\varsigma}) &= \tilde{\gamma} \left(J \wedge Q_2 - T'_0 \wedge T'_1 - Q_1 \wedge T'_2 \right) - \frac{\tilde{\varsigma}}{2} \left(J - T'_1 \right) \wedge \left(Q_2 + T'_0 \right), \\ r_{CIVa}(\tilde{\gamma},\hat{\gamma}) &= -\tilde{\gamma} \left(J \wedge T'_0 + Q_1 \wedge T'_2 - Q_2 \wedge T'_1 \right) - \hat{\gamma} Q_2 \wedge T'_0 \\ &\cong -\tilde{\gamma} \left(J \wedge T'_0 + Q_1 \wedge T'_2 - Q_2 \wedge T'_1 \right) = r_{CIVa}(\tilde{\gamma}) \end{aligned}$$
(13)

 $(T'_{\mu} \equiv |\Lambda|^{-1/2}T_{\mu})$, describing deformations of adSC algebra, are not. The corresponding automorphism of adS is not inherited by adSC. Automorphisms yield additional contraction limits also for dS-Galilei.

Trivialized/reduced deformations – examples

A classical *r*-matrix is determined up to an antisymmetric split-Casimir, i.e. such $C_s \in \mathfrak{g} \land \mathfrak{g}$ that $\forall_{x \in \mathfrak{g}} : [x \otimes 1 + 1 \otimes x, C_s] = 0$. We find that Galilei algebra has an antisymmetric split-Casimir

$$\mathcal{C}_{s1} := \mathbf{Q}_1 \wedge \mathbf{T}_1 + \mathbf{Q}_2 \wedge \mathbf{T}_2, \qquad (14)$$

while (anti-)de Sitter-Galilei algebra has both (14) and

$$\mathcal{C}_{s2} := Q_1 \wedge Q_2 - \Lambda^{-1} T_1 \wedge T_2 \,. \tag{15}$$

The quantum contraction limits are simplified by dropping such terms. Incidentally, the *r*-matrix (14) describes timelike κ -deformation.

Spacelike κ -deformation for Carroll and (a)dS-Carroll is reduced to:

$$r(\gamma) = \gamma \left(J_0 \wedge P_1 + K_2 \wedge P_0 \right) \quad \xrightarrow[c \to 0]{} \quad r(\hat{\gamma}) = \hat{\gamma} Q_2 \wedge T_0 \,. \tag{16}$$

Abridged definition of the Hopf algebra

A Hopf algebra *A* is the vector space over a field *K*, equipped with a product (e.g. a Lie bracket) $\nabla : A \otimes A \rightarrow A$, satisfying the associativity

$$\nabla \circ (\nabla \otimes \mathrm{id}) = \nabla \circ (\mathrm{id} \otimes \nabla); \qquad (17)$$

a coproduct $\Delta : A \rightarrow A \otimes A$, satisfying the coassociativity

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta;$$
 (18)

and an antipode $S : A \rightarrow A$, satisfying the relation

$$\nabla \circ (\boldsymbol{S} \otimes \mathrm{id}) \circ \Delta = \nabla \circ (\mathrm{id} \otimes \boldsymbol{S}) \circ \Delta = \mathbb{1}. \tag{19}$$

The tensor product of a pair of algebra representations $(\rho_1, V_1), (\rho_2, V_2)$ (where $\rho_{1,2} : A \to GL(V_{1,2})$) is given by $(\rho, V_1 \otimes V_2)$, such that

$$\rho(\mathbf{a})(\mathbf{v}_1 \otimes \mathbf{v}_2) = (\rho_1 \otimes \rho_2)(\Delta(\mathbf{a}))(\mathbf{v}_1 \otimes \mathbf{v}_2), \qquad (20)$$

where $a \in A$, $v_{1,2} \in V_{1,2}$.

Example – the Hopf algebra corresponding to r_{III}

Denoting $H_0 \equiv H$, $H_1 \equiv \overline{H}$, $E_{0\pm} \equiv E_{\pm}$, $E_{1\pm} \equiv \overline{E}_{\pm}$ and $q_0 \equiv e^{\gamma/2}$, $q_1 \equiv e^{\overline{\gamma}/2}$, $\theta \equiv e^{\eta/4}$, we write down the deformed brackets

$$[H_k, E_{k\pm}] = E_{k\pm}, \qquad [E_{k+}, E_{k-}] = \frac{q_k^{2H_k} - q_k^{-2H_k}}{q_k - q_k^{-1}}, \qquad (21)$$

where k = 0, 1. In the limit $q_k \rightarrow 1$ it reduces to $[E_{k+}, E_{k-}] = 2H_k$. Meanwhile, the coproducts have the form

$$\Delta(H_k) = H_k \otimes 1 + 1 \otimes H_k ,$$

$$\Delta(E_{k\pm}) = E_{k\pm} \otimes q_k^{H_k} \theta^{\mp (-1)^k H_{k+1}} + \theta^{\pm (-1)^k H_{k+1}} q_k^{-H_k} \otimes E_{k\pm}$$
(22)

and antipodes

$$S(H_k) = -H_k$$
, $S(E_{k\pm}) = -q_k^{\pm 1} E_{k\pm}$. (23)

The dual of the subalgebra of translations are spacetime coordinates

$$[X_0, X_a] = 2\gamma X_a, \qquad [X_a, X_b] = 0, \quad a, b = 1, 2.$$
 (24)

イヨト イラト イラト

3

Poisson structure of 3D (Chern-Simons) gravity

 \mathfrak{g} equipped with *r* becomes the Lie algebra of a Poisson-Lie group of spacetime symmetries, dual to the particle phase space. At the same time, *r* determines the Hopf-algebraic deformation of \mathfrak{g} , providing the quantization of the theory. The consistency with 3D gravity requires

$$r = r_{A} + r_{S}, \quad r_{S} = \alpha \left(P_{\mu} \otimes J^{\mu} + J^{\mu} \otimes P^{\mu} \right) + \beta \left(\Lambda J^{\mu} \otimes J_{\mu} - P^{\mu} \otimes P_{\mu} \right), \quad \alpha, \beta \in \mathbb{R},$$
(25)

where r_S corresponds to the generalized form of the inner product in Chern-Simons action ($\beta = 0$ in the standard case), while *r* satisfies the homogeneous Yang-Baxter equation, hence r_A :

$$\begin{split} [[r_A, r_A]] &= -[[r_S, r_S]] \\ &= -(\alpha^2 - \Lambda\beta^2) \left(\Lambda J_0 \wedge J_1 \wedge J_2 + \frac{1}{2} \epsilon^{\mu\nu\sigma} J_\mu \wedge P_\nu \wedge P_\sigma\right) \\ &- 2\alpha\beta \left(\frac{1}{2} \Lambda \epsilon^{\mu\nu\sigma} J_\mu \wedge J_\nu \wedge P_\sigma + P_0 \wedge P_1 \wedge P_2\right) \,. \end{split}$$
(26)

We call such a r_A to be FR-compatible and classify all of them in J. Kowalski-Glikman, J. Lukierski & T. T., JHEP 09, 096 (2020).

r-matrices of 3D (A)dS algebra relevant for gravity

Calculating the Schouten bracket $[[r_A, r_A]]$, we find that *r*-matrices are:

	FR-compatible $\forall \alpha, \beta$	FR-compatible for $\beta = 0$	FR-compatible for $\alpha, \beta \neq 0$
o(3, 1)	r _{III} , r ^a	r_{IV}, r_{IV}^a	
i(2,2)	r _{III}	r_{IV}, r_{IV}^a	r _V
₀′(2, 2)			r ₁₁₁

Example – FR-compatible *r*-matrices of dS algebra:

$$\begin{split} r_{III}(\gamma - \bar{\gamma}, \gamma + \bar{\gamma}, \eta; \Lambda) &= \frac{1}{2}(\gamma - \bar{\gamma}) \left(J_1 \wedge J_2 - \Lambda^{-1} P_1 \wedge P_2 \right) \\ &+ \Lambda^{-1/2} \frac{1}{2} (\gamma + \bar{\gamma}) \left(J_1 \wedge P_2 - J_2 \wedge P_1 \right) + \Lambda^{-1/2} \frac{\eta}{2} J_0 \wedge P_0 , \\ r_{III}^a(\gamma - \bar{\gamma}, \gamma + \bar{\gamma}, \eta; \Lambda) &= \Lambda^{-1/2} \frac{1}{2} (\gamma - \bar{\gamma}) \left(J_0 \wedge P_2 - J_2 \wedge P_0 \right) \\ &+ \frac{1}{2} (\gamma + \bar{\gamma}) \left(J_0 \wedge J_2 - \Lambda^{-1} P_0 \wedge P_2 \right) + \Lambda^{-1/2} \frac{\eta}{2} J_1 \wedge P_1 , \\ r_{IV}(\gamma, \varsigma; \Lambda) &= \gamma \left(J_1 \wedge J_2 - \Lambda^{-1/2} J_0 \wedge P_0 - \Lambda^{-1} P_1 \wedge P_2 \right) \\ &+ \frac{\varsigma}{2} \left(J_1 - \Lambda^{-1/2} P_2 \right) \wedge \left(J_2 + \Lambda^{-1/2} P_1 \right) , \\ r_{IV}^a(\gamma, \varsigma; \Lambda) &= \Lambda^{-1/2} \gamma \left(J_0 \wedge P_1 - J_1 \wedge P_0 - J_2 \wedge P_2 \right) \\ &+ \Lambda^{-1/2} \frac{\varsigma}{2} \left(J_0 - J_1 \right) \wedge \left(P_0 - P_1 \right) . \end{split}$$
(27)

To be compared with P. K. Osei & B. J. Schroers, CQG 35, 075006 (2018).

r-matrices of (A)dS algebra in the $\Lambda \rightarrow 0$ limit

Quantum IW contractions of *r*-matrices of (A)dS algebra lead to the following *r*-matrices of 3D Poincaré algebra:

<i>r</i> -matrix automorphism class ^a	o(3, 1)↓	ċ(2,2)↓	ở′(2,2)↓
$r_1 = \chi \left(J_0 + J_1 \right) \wedge J_2$	r _l ^b	rla	
$\hat{r}_2 = \hat{\gamma} \left(J_0 \wedge \mathcal{P}_2 - J_2 \wedge \mathcal{P}_0 ight) + rac{1}{2} \hat{\eta} J_1 \wedge \mathcal{P}_1$	\hat{r}^a_{III}	Ŷ _Ⅲ	
$\hat{r}_3 = \hat{\gamma} \left(J_1 \wedge \mathcal{P}_2 - J_2 \wedge \mathcal{P}_1 ight) + rac{1}{2} \hat{\eta} J_0 \wedge \mathcal{P}_0$	r _{III}		r _{III}
$\hat{r}_4 = rac{1}{\sqrt{2}}\hat{\chi}\left(J_+ \wedge \mathcal{P}_1 - J_1 \wedge \mathcal{P}_+ ight) - \hat{arsigma} J_+ \wedge \mathcal{P}_+$	î _{ll}	î _{ll}	
$\hat{i}_5 = \frac{1}{2}\hat{\chi}J_1 \wedge (\mathcal{P}_0 + \mathcal{P}_2)$	r _l a	\hat{r}_V	
$\hat{f}_6 = \hat{\gamma} \left(J_0 \wedge \mathcal{P}_2 - J_2 \wedge \mathcal{P}_0 - J_1 \wedge \mathcal{P}_1 ight) - \hat{\varsigma} J_+ \wedge \mathcal{P}_+$	\hat{r}^a_{IV}	\hat{r}^a_{IV}	
$\hat{r}_7 = \hat{\gamma} \left(J_0 \wedge \mathcal{P}_0 - J_1 \wedge \mathcal{P}_1 - J_2 \wedge \mathcal{P}_2 ight)$	r _{IV}	\hat{r}_{IV}	

(as well as the irrelevant cases $\sim P_{\mu} \wedge P_{\nu}$), where $J_{+} \equiv \frac{1}{\sqrt{2}}(J_{0} + J_{2})$, $P_{+} \equiv \frac{1}{\sqrt{2}}(P_{0} + P_{2})$. Only \hat{r}_{2} , \hat{r}_{6} and \hat{r}_{7} are relevant for 3D gravity, i.e.

$$\begin{split} [[r_1, r_1]] &= [[\hat{r}_4, \hat{r}_4]] = [[\hat{r}_5, \hat{r}_5]] = 0, \\ & [[\hat{r}_3, \hat{r}_3]] = \hat{\gamma}^2 \epsilon^{\mu\nu\sigma} J_\mu \wedge \mathcal{P}_\nu \wedge \mathcal{P}_\sigma, \\ [[\hat{r}_2, \hat{r}_2]] &= [[\hat{r}_6, \hat{r}_6]] = [[\hat{r}_7, \hat{r}_7]] = -\hat{\gamma}^2 \epsilon^{\mu\nu\sigma} J_\mu \wedge \mathcal{P}_\nu \wedge \mathcal{P}_\sigma. \end{split}$$
(28)

^aP. Stachura, J. Phys. A: Math. Gen. **31**, 4555 (1998)

21/13