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Context and motivation

Landscape of spacetime symmetries:

@ Kinematical algebras, e.g. Poincaré, Carroll and Galilei; also their
(central) extensions, e.g. Bargmann

@ Asymptotic-symmetry algebras, e.g. BMS (and extensions); also
their non-Lorentzian versions, e.g. BMS-Carroll and BMS-Galilei

@ Quantum (Hopf-algebraic) deformations of both kinds of algebras,
e.g. k-Poincaré, as well as e.g. xk-BMS.y,

@ Non-Lorentzian versions of the latter, e.g. x-Carroll and «-Galilei

In 2+1 dimensions, with the cosmological constant A:

@ Recently completed classification of (quantum) deformations
@ The cases of A # 0 and A = 0 related by quantum contractions?
@ Such deformations arise in the classical theory of (2+1)d gravity

4Kowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

T. Trze$niewski Carrollian and Galilean 3D deformed symmetries 2/13



(Deformed) kinematical algebras Classical non-Lorentzian
Reaching the quantum

Non-Lorentzian kinematics (in any dimension)

Carrollian symmetries:

@ Associated with the Carroll (or ultrarelativistic) limit ¢ — 0

e Ultralocality — trivial dynamics of free particles

e Two Carroll limits of GR: “electric” and “magnetic”

e Strong-gravity expansion, BKL conjecture, asymptotic silence?
@ Symmetries of null hypersurfaces one dimension higher

@ Black-hole horizons, plane gravitational waves
e BMS group = a conformal extension of Carroll group

4Mielczarek & T. T., PRD 96, 024012 (2017)

Galilean symmetries:

@ Associated with the Galilei (or “nonrelativistic”) limit ¢ — oo
o Weak-gravity expansion, gravitational waves research

@ Algebraic/geometric structures “dual” to the Carrollian ones
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(Deformed) kinematical algebras Classical non-Lorentzian
Reaching the quantum

Lorentz, Carroll and Galilei in (2+1)d

The brackets of Poincaré and (anti-)de Sitter algebras in (2+1)d can
be written in a unified fashion (with A =0, A <0 or A > 0):

[Jo.Ka] = €2 Ko, [Ki,Ke] = —do, [o,Pal=eaPs, [Jo,Po] =0,
[Ka, Po] = davPo, [Ka, Pol = Pa, [P1,P]=Ady, [Po,Pal=—-AKa. (1)

Denoting J := Jy, T, := P, and rescaling Q, := cK,, Tg := ¢ Py, we
take the limit ¢ — 0 to obtain Carroll / (anti-)de Sitter-Carroll algebra:

[V, Q=€'Q, [Q,Q]=0, [UT]=eTo, [JTo]=0,
[Qa7 Tb] = 5abT07 [067 TO] = Oa [7—17 T2] = /\J7 [Ta, TO] = /\ Qa . (2)

If we denote J := Jp, Tp := Py and rescale Q.= ¢ 'Ky, T := ¢ ' Py,
the limit ¢ — oo leads to Galilei / (anti-)de Sitter-Galilei algebra:

[V, Qi = e, [Q1,Q]=0, [J,T=€'To, [J,To]=0,
[Oa> Tb] - 07 [Oa7 TO] = Ta, [T17 T2] = 0, [Ta7 TO] = /\Oa (3)
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(Deformed) kinematical algebras
Reaching the quantum

Quantum deformations of relativistic symmetries

Instead of breaking the symmetries, one may deform them. The best
studied example is given by the k-Poincaré algebra, which (in (2+1)d)
differs from the ordinary Poincaré algebra by the brackets

[K1,K2] — — cosh (P()/Ii)q.]()7 [Ka, Pb] = IiSinh(Po/li)(Sab, (4)

with the deformation parameter « € IR ; the classical limit is kK — +oc.

Such a deformed algebra is actually a Hopf algebra #, generalizing a
(Lie) algebra U(g) and equipped not only with the Lie bracket (product)
[,]:H®H— H but also the coproduct and the antipode:

AH—HOIH, S:H—H, (5)

which satisfy certain consistency conditions.

T. Trze$niewski Carrollian and Galilean 3D deformed symmetries 5/13



(Deformed) kinematical algebras

Coboundary deformations and r-matrices

If a deformation is coboundary, the coproduct of any x € g can be
expanded with respect to its deformation parameters {q;} as

A(X; qi) = Do(X) + [r, Ao(X)] + O(GF) . Do(x)=x@1+1@x, (6)

where r € g A g is the so-called (antisymmetric) classical r-matrix and
is actually an equivalence class with respect to automorphisms of g.
Moreover, r is a solution of the classical Yang-Baxter equation

[[r,r]] =tQ, Qecgogrg, teC, (7)

where Q is g-invariant and [[,]] denotes Schouten bracket. (r-matrix is
called quasitriangular if t # 0, or triangular if f = 0.)
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(Deformed) kinematical algebras

Quantum contractions and deformation parameters

To perform a (quantum) contraction of a quantum-deformed algebra,
one not only needs to rescale the appropriate generators but also each
deformation parameter q is rescaled to:

g:=q/w® o §:=q/w o q=gq; (8)
with w = |A] for A = 0,and w = cfor ¢ — 0, and w = ¢~ for ¢ — oo.

Technical subtleties:
@ linear redefinitions of parameters before the rescaling,

@ transformation by a suitable automorphism may lead to an
inequivalent contraction limit,

@ a r-matrix is determined up to an “antisymmetric split-Casimir”,
ie.suchCsegAangthatvxeg: [x®1+1®x,C] =0.
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Classifying and contracting
Quantum contractions overview Carrollian and Galilean

Classifications of deformations vs their contractions

Semisimple or inhomogeneous-(pseudo)orthogonal algebras have only
coboundary deformations, which can be completely classified in terms
of r-matrices. This has been achieved for 2+1-dimensional algebras:

@ Poincaré (as well as Euclidean)?,
@ (anti-)de Sitter®,
@ (anti-)de Sitter-Carroll (isomorphisms with Poincaré/Euclidean)®.

Quantum contractions of (anti-)de Sitter r-matrices in the limit:
@ A — 0, leading to Poincaréd,
@ ¢ — 0, leading to (a)dS-Carroll®,

recover all r-matrix classes for a given target algebra, up to a few
missing terms in some classes.

aStachura, JPA 31, 4555 (1998)

bBorowiec, Lukierski & Tolstoy, JHEP 11, 187 (2017)

CT. T., arXiv:2306.05409 [hep-th]

dKowaIski—GIikman, Lukierski & T. T., JHEP 09, 096 (2020)
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Classifying and contracting
Quantum contractions overview Carrollian and Galilean

Deformations of Poincaré and (a)dS algebras
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Figure: Quantum A — 0 contractions relating all r-matrices for (anti-)de Sitter
and Poincaré algebras; a two-headed arrow means that a given contraction
recovers the full class; double arrows denote automorphisms.
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Quantum contractions overview

Deformations of Carroll and Galilei algebras

We derived the Carroll/Galilei r-matrices by quantum ¢ — 0/ ¢ — oo
contractions of the Poincaré ones. Possibly, some deformations can
not be obtained in this way. There may also exist non-coboundary
deformations of these algebras?.

Carroll: Tc3 TC2 TCe TCs
AR AR
c— OT T / RN / RN T
I N ~ I N ~
Poincaré: 73 ) 5 T4 T'6 7 T rs
C % wl i i l ) ) X i . ’ i l i
. RN ¥
Galilei: 73 G2 TGs rGe el rGs

Figure: Quantum ¢ — 0/ ¢ — oo contractions relating all r-matrices for
Poincaré with those obtained for Carroll/Galilei algebra; a dashed line means
that a given contraction leads to a subclass.

2Ballesteros et al., PLB 805, 135461 (2020)

T. Trze$niewski Carrollian and Galilean 3D deformed symmetries 10/13



ying and contracting
Quantum contractions overview Carrollian and Galilean

Deformations of (a)dS, (a)dSC and Carroll algebras

ds: rrrr rIr T v
Cﬁol / \ / /
dSC: T = rciila rCrla = Ty Tor
A%Ol \ / l
Carroll: Tcs rco rcs TC6
Aol 1IN AN
adSC: Ty ror 5 Ty 2y Ty rer T
o] I s e NN
adS:  Tir rrrr (A% rrr T ryn rr rv

Figure: Quantum ¢ — 0 and A — 0 contractions relating all r-matrices for
(anti-)de Sitter and (a)dS-Carroll, and those obtained for Carroll algebra; a
two-headed arrow means that a ¢ — 0 contraction recovers the full class.

Complete classification for (a)dSC is obtained via isomorphisms with
Poincaré/Euclidean algebras.

T. Trze$niewski Carrollian and Galilean 3D deformed symmetries 11/13



ng and contracting

Quantum contractions overview Carrollian and Galilean

Deformations of (a)dS, (a)dSG and Galilei algebras

ds: Trr TV T Tr
L TV R AN
« -
dSG: rGirre TG TGIVa TGII rGI TGIb TGla
A — Ol /
Galilei: G2 rG3 rGe6 rG8 TGl TG
A — OT \ /
adSG: Tarrr - Trarr 7‘@1\( 7'GII{’” els rav
adS: Tt Trr rv Trr Trrr \7“\/" Tr Tv

Figure: Quantum ¢ — oo and A — 0 contractions relating all r-matrices for
(anti-)de Sitter with those obtained for (a)dS-Galilei and Galilei algebras; a
dashed line means that a ¢ — oo contraction leads to a subclass.

Possibly, not all deformations of (a)dSG can be obtained by contrac-
tions and there may also exist non-coboundary ones.
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Quantum contractions overview

Summary — special cases of deformations

The cases of particular interest are time- and spacelike x-deformations,
and the Lorentz double. They also survive under (almost) all quantum
contractions (A — 0, ¢ — 0, or ¢ — o) for both A > 0 and A < 0.

[ algebra T timelike x-deformation | spacelike ~-deformation |

Lorentz double

|

dsc rom(3+) = ry7 () roma(—) = s (012) rov (%) & ry ()
Carroll rea(%) rc2 (%) res (%)
adSC Tomr (+) = rar () rem(%+) = ry (020) reva(¥) = ryr ()

ds I (y+) (=) = rm(y-) nv(2y =)

Poincaré r3(7) r2(v) r7(v)

adS i (v4) = e (v—) fn(y+) = r(y-) rv(2y = —<)

dasG 0 raima(y—) ranva(2y = —<)
Galilei 0 ra2(%) ras(9 = <)
adsG 0 ram(3+) = ram(3-) rav(2y = =3)

Table: r-matrices (only # 0 parameters shown) that characterize the above
cases of deformations, depending on a kinematical algebra.
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Why para-Euclidean and para-Poincaré?

Let us also show the brackets of (inhomogeneous) Euclidean algebra:

(s, Ka] = €K,  [Ki, Kol = s, [ds, Pa] = €2Po, [J3,Ps] =0,
[Ka, Po] = —0abPs, [Ka, Ps]=Pa, [Pi,P]=0, [Ps,Ps]=0. (9)

It describes different kinematics but is related by the isomorphism
Ko NV2T,, Pas N'V2Q, 3 d, P3s Ty (10)

with de Sitter-Carroll algebra, hence called the “para-Euclidean”. Mean-
while, Poincaré algebra is mathematically related by the isomorphism

Ko INTV2Ta, Pas —NY2Qa, do—d, Po—=Ty (11)

with anti-de Sitter-Carroll algebra, hence called the “para-Poincaré”.

Moreover, the name “expanding/oscillating Newton-Hooke” is some-
times used for dS-Galilei/adS-Galilei algebra.
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Quantum contractions vs automorphisms

If we transform a deformed algebra by a suitable automorphism, this
may lead to a separate contraction limit, e.g. two representatives of
the r-matrix class ryy for anti-de Sitter algebra

wquyMAm—%AH—mARQ—%%—HNWQ+%y
M(1.5) = = (Jo APy + Ko A PG+ Ky A PE) + 5 (do — Ko) A (Ps + PY) (12)

(P, = |A|="/2P,) are equivalent but their Carrollian contraction limits

Imﬁ@:%UA@fHAﬁfQAE%éwfﬂWWQ+H%
rCIVa(’%ﬁ/) = -5 (J/\ T(;+Q1 A\ Tgl - QA 7-1,) *’,?Qz/\ To,
>~ 5 (J/\ T(; + Q1 A Tgl — QA 7—1/) = rCIVa(;}'/) (13)

(T, = |A|="/2T,,), describing deformations of adSC algebra, are not.
The corresponding automorphism of adS is not inherited by adSC.
Automorphisms yield additional contraction limits also for dS-Galilei.
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Trivialized/reduced deformations — examples

A classical r-matrix is determined up to an antisymmetric split-Casimir,
i.e. such Gy € gAgthat Veey : [Xx® 14+ 1@ x,C] = 0. We find that
Galilei algebra has an antisymmetric split-Casimir

Ca=QANT1+ QN Ty, (14)
while (anti-)de Sitter-Galilei algebra has both (14) and
Co=QNQ-N"TIAT;. (15)

The quantum contraction limits are simplified by dropping such terms.
Incidentally, the r-matrix (14) describes timelike «-deformation.

Spacelike x-deformation for Carroll and (a)dS-Carroll is reduced to:

r()=7(APi+KeAP) — r(3)=4QATy. (16)

c—0
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Abridged definition of the Hopf algebra

A Hopf algebra A is the vector space over a field K, equipped with a
product (e.g. a Lie bracket) V : A® A — A, satisfying the associativity

Vo(V®id)=Vo(id® V); (17)
a coproduct A : A — A® A, satisfying the coassociativity
(A®id)o A= (i[d® A)oA; (18)
and an antipode S : A — A, satisfying the relation
Vo(S®id)oA=Vo(id@S)oA=1. (19)

The tensor product of a pair of algebra representations (p1, V1), (p2, Vo)
(where p1 : A— GL(V;2)) is given by (p, V4 ® V2), such that

p(a@)(vi ® vo) = (p1 @ p2)(A(a))(vi ® v2), (20)

where ac A, vy € V.
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Example — the Hopf algebra corresponding to ry;

Denoting Hy = H, Hy = H, Eox = E4, Eix = E; and qo = /2,
g1 = €7/2, 0 = e"/*, we write down the deformed brackets

PH
[Hk, Ek+] = Ek+ , [Eiy, Ex_] = 2K

where k = 0,1. In the limit gx — 1 it reduces to [Ex., Ex—_] = 2Hk.
Meanwhile, the coproducts have the form
A(Hk) = Hc®1+1® H,
A(Es) = Exs @ gproTCD Har p g= D Mgt £, (22)
and antipodes
S(H) = —Hx,  S(Eks) = —q;" Eix - (23)
The dual of the subalgebra of translations are spacetime coordinates

[Xo0, Xa] = 2v Xa, [Xa, Xp] =0, ab=1,2. (24)
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Poisson structure of 3D (Chern-Simons) gravity

g equipped with r becomes the Lie algebra of a Poisson-Lie group of
spacetime symmetries, dual to the particle phase space. At the same
time, r determines the Hopf-algebraic deformation of g, providing the
quantization of the theory. The consistency with 3D gravity requires

r=ra+rs, rs=aoa(P,®J"+J"®P")
+BANS@J,—Pr@P,), a,BeR, (25
where rs corresponds to the generalized form of the inner product in

Chern-Simons action (5 = 0 in the standard case), while r satisfies
the homogeneous Yang-Baxter equation, hence ra:

[[ra, rall = —[[rs, rsl]
= —(® = AB) (N A Ado+ 5 € J, AP, AP,)
—2aB (AN Iy NIy APy + Py APy AP2) . (26)

We call such a ra to be FR-compatible and classify all of them in
J. Kowalski-Glikman, J. Lukierski & T. T., JHEP 09, 096 (2020).
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r-matrices of 3D (A)dS algebra relevant for gravity
Calculating the Schouten bracket [[ra, ra]], we find that r-matrices are:

FR-compatible Vo, 8 FR-compatible for 5 = 0 FR-compatible for «, 8 # 0
0(3,1) T, Ty nv, iy
0(2,2) T v, Iy ry
0’(2,2) m

Example — FR-compatible r-matrices of dS algebra:
m(y = 3,7 +3,mA) = (v —7) <J1 Ado — APy A Pz)
AL A (B AP = R AP AT D AP,
O =3y + 3, mA) = A2y = F) (o A P — do A Po)
+ 30 4+7) (b Ak = AR AP) AT APy
(A =7 (b Ak = APl AP — AT P AP
S _a—1/2 —1/2
+2(J1 A Pz)/\(Jer/\ P1>7
(v s A) = A2y (o APr— i APy — o A Py)
A2 (o — ) A (P P). (27)
To be compared with P K. Osei & B. J. Schroers, CQG 35, 075006 (2018).
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r-matrices of (A)dS algebra in the A — 0 limit

Quantum IW contractions of r-matrices of (A)dS algebra lead to the
following r-matrices of 3D Poincaré algebra:

[ r-matrix automorphism class® [o@B, NI (221 [ ¢(2,2)] |

f1:X(J0+J1)/\J2 f,b I’,a
?’2:’3/(‘/0/\7327«/2/\730)4»*77‘/1/\731 /A’ﬁ, T

T3 =4 (Ji AN P2 —do AP1)+ 35do A Po Fiy T
= SR AP —h APL) =3 AP, 7z 72
s = Ixh A (Po + P2) i [
o= AP2—do APy —J1 AP1) —SJdy APy v T
7 =% APo—Jd AP1 — o AP2) Ty Ty

(as well as the irrelevant cases ~ P, A P,), where J; = %(Jo + Jo),
P, = %(Po + P5). Only 7, 75 and 7, are relevant for 3D gravity, i.e.

[[r1, 1]l = [[Fa, Ta]] = [[7s, 75]] = O,
[[73, Ta]] = %€ dy APy APy,
([P, 1] = [[%6, T6]] = [[F7, 7] = —5%€¢""Ju AP, APy  (28)

4P, Stachura, J. Phys. A: Math. Gen. 31, 4555 (1998)
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