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signal that we want to detect. More precisely, the input and output of
the detector are scalar quantities, while the GW is described by a tensor
hij . So, in general, the input of the detector will have the form

h(t) = Dijhij(t) , (7.1)

where Dij is a constant tensor which depends on the detector geometry,
and is known as the detector tensor. For example, for a detector which is
driven only by the (x, x) component of hij (which, as we will see, is the
case for a resonant bar oriented along the x axis), Dij = 1 if i = j = 1
and Dij = 0 otherwise. We will later compute the explicit form of Dij

for interferometers and for resonant masses.
For a linear system, the output of the detector is a linear function,

in frequency space, of the input h(t), that is, the output hout(t) of the
detector (in the absence of noise) is related to the input h(t) by

h̃out(f) = T (f)h̃(f) , (7.2)

where T (f) is known as the transfer function of the system. However,
in the output of any real detector there will also be noise, so the output
sout(t) will be rather given by

sout(t) = hout(t) + nout(t) . (7.3)

More precisely, a detector can be modeled as a linear system with many
stages, labeled by i = 1, . . . , N , each one with its own transfer function
Ti(f), so the total transfer function is T (f) =

Q
i Ti(f). For example,

we will see in Chapter 8 that resonant-bar detectors are composed of
a heavy aluminum cylinder which is set into oscillation by an incoming
GW; its energy is then transferred to a lighter mechanical oscillator,
coupled to the heavy bar, which works as a mechanical amplifier, then
it is transformed into an electric signal by an LC circuit coupled to the
light oscillator, and then this electric signal is further amplified by one
or more SQUIDs, and recorded. Clearly, noise can be generated at each
of these stages. Each noise will propagate to the output with a transfer
function which depends on the point of the linear system at which it
first appeared, see Fig. 7.1, and will contribute to total noise nout(t) at
the output. It is convenient to refer each noise to the detector input,
defining the quantity n(t) from
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Fig. 7.1 A schematic representation
of a detector as a linear system.
The full transfer function T (f) is
the product of the separate transfer
function. Here T (f) = T1(f)T2(f),
and ñout(f) = T1(f)T2(f)na(f) +
T2(f)nb(f).

ñ(f) = T�1(f)ñout(f) , (7.4)

where nout(t) is the total noise measured at the output. That is, n(t)
is a fictitious noise that, if it were injected at the detector input, and
if there were no other noise inside the detector, would produce at the
output the noise nout(t) that is actually observed. It is therefore the
quantity that we can compare directly with h(t), i.e. to the e↵ect due
to the GW. We then define
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and we can simply think of the detector as if s(t) were its output, com-
posed of a noise n(t) and a GW signal h(t),1 and the detection problem 1One often multiplies the detector out-

put by T�1(f) already at the level of
data acquisition, so in this sense s(t) is
really the output of the data acquisition
system.

is how to distinguish h(t) from n(t). In the following, when we speak of
the detector output, we will always refer to s(t).2 If one has a theoretical

2Some more nomenclature: we will al-
ways use the word “event” to indicate
that in the detector happened some-
thing, which deserves further scrutiny.
At this stage, it could be due to a GW
or (much more likely) to noise. An
event which is already assumed to have
been generated by a GWwill be called a
“GW signal”. The letter s convention-
ally used to denote the detector output
s(t) = h(t) + n(t) does not stand for
“signal” (the signal in this nomencla-
ture is h(t)). It can rather be taken
to denote the “strain amplitude” of the
detector.

model for a given source of noise ni(t), which appears at a given stage
of the linear system, we can compare it with h(t) simply multiplying
it by the inverse of the appropriate transfer function, in order to refer
this noise to the detector input. Equivalently, of course, one could refer
both the noise and the signal to the true detector output, and com-
pare nout(t) to the quantity hout(t) whose Fourier transform is given by
eq. (7.2). However, the great advantage of referring everything to the in-
put is that n(t) gives a measure of the minimum value of h(t) that can be
detected and h(t), apart from the geometrical factor Dij which is always
of order one, depends only on the incoming GW. In contrast, hout(t) de-
pends on the transfer function of the system, and di↵erent detectors can
have transfer functions which di↵er by many orders of magnitude. Thus,
the use of nout(t) and hout(t) would be very unpractical when we want
to compare the performances of di↵erent detectors.

So, in the above sense, we take n(t) to be the detector’s noise. If the
noise is stationary, as we assume for the moment, the di↵erent Fourier
components are uncorrelated, and therefore the ensemble average3 of 3The ensemble average is the average

over many possible “realizations” of the
system. In practice we have only one
physical system, our detector, but we
can follow it in time, so the ensemble
average is replaced by a time average
(this implicitly assumes that the sys-
tem is ergodic). Then the ensemble av-
erage is computed measuring the noise
n(t) over a given time interval T , and
considering this as a “realization” of the
system. From this we obtain ñ(f) (with
a resolution in frequency �f = 1/T ).
We then repeat the procedures over a
subsequent time stretch, again of du-
ration T and separated by a su�cient
time shift from the first realization, so
that the correlation between the noise
n(t) in the two stretches can be ne-
glected, and we define this as a second
independent realization of the system.
Finally, we average ñ(f) over many in-
dependent realizations. It is useful to
keep in mind that a time-scale T is im-
plicit in this procedure, and will indeed
appear in the equations below.

the Fourier components of the noise is of the form

hñ⇤(f)ñ(f 0)i = �(f � f 0)
1

2
Sn(f) . (7.6)

The above equation defines the function Sn(f). Since n(t) is real,
ñ(�f) = ñ⇤(f) and therefore Sn(�f) = Sn(f). If n(t) is dimension-
less, as we will assume, Sn(f) has dimensions Hz�1. Without loss of
generality, we can also assume that

hn(t)i = 0 . (7.7)

Observe that, for f = f 0, the right-hand side of eq. (7.6) diverges.
However, in any real experiment we have a finite value of the time
T used to measure ñ(f), see Note 3. Restricting the time interval to
�T/2 < t < T/2 we have

�(f = 0) !

"Z T/2

�T/2
dt ei2⇡ft

#�����
f=0

= T . (7.8)

Then, from eq. (7.6) with f = f 0, we get

⌦
|ñ(f)|2

↵
=

1

2
Sn(f)T . (7.9)

For a function defined on the interval [�T/2, T/2], the Fourier modes
have discrete frequencies fn = n/T , so the resolution in frequency is
given by

�f =
1

T
. (7.10)
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describing the shape of the pulse. For a coalescing binary, among the pa-
rameters we will have the time of entry in the interferometer bandwidth,
the distance to the source, the star masses, etc.

Therefore, we must consider a family of possible waveforms, or tem-
plates, that we denote generically as h(t; ✓), where ✓ = {✓1, . . . , ✓N} is a
collection of parameters. Correspondingly, we have a family of optimal
filters K(t; ✓), determined through eq. (7.49), K̃(f ; ✓) ⇠ h̃(f ; ✓)/Sn(f).
In practice, this means that we must discretize the ✓-space, and repeat
the filtering procedure many times, once for each point of this discretized
parameter space (except that for some parameters the maximization pro-
cedure can be done analytically, see below).

The problem that we address in this section is the following. Suppose
that a GW signal has indeed been detected, which means that for some
template h(t; ✓) the value of S/N , determined by the optimal Wiener
filtering (or by any other procedure that we specified in advance) has
exceeded a predetermined threshold, and the signal satisfies further cri-
teria that we might have set for claiming detection, such as coincidences
between di↵erent detectors (we will see in more detail in Sections 7.4.3
and 7.5.3 some possible criteria that could allow us to claim a detection,
at a given confidence level). How do we reconstruct the most probable
value of the parameters of the source, and how we compute the error on
these parameters?

This question is Bayesian in nature, so its answer is contained in the
posterior probability. To compute the likelihood function, and hence
the posterior probability, we assume for simplicity that the noise n(t)
is stationary and Gaussian. From eq. (7.6) we see that the variance
of the Fourier mode of the noise with frequency f is proportional to
(1/2)Sn(f), so the corresponding Gaussian probability distribution for
the noise is

p(n0) = N exp

⇢
�
1

2

Z 1

�1
df

|ñ0(f)|2

(1/2)Sn(f)

�
, (7.59)

where N is a normalization constant. This is the probability that the
noise n(t), which is a random variable with zero mean, has a given
realization n0(t). The above result can be rewritten very simply in
terms of the scalar product (7.46) as17

17For simplicity, we limit ourselves to
the case of a single detector. The
formalism can however be extended
straightforwardly to multiple detectors.
In this case the definition of the noise
spectral density, eq. (7.6), is replaced
by

hñ⇤
a(f)ñb(f

0)i = �(f � f 0)
1

2
[Sn(f)]ab ,

(7.60)
where the indices a, b label the detec-
tors. This definition takes into account
the possibility of correlated noise. Let
A(t) and B(t) be vectors whose com-
ponents Aa(t) and Ba(t) are output of
the single detectors, and let [S�1

n ]ab de-
note the inverse matrix. The equations
of this section can then be generalized
to multipole detectors, using the scalar
product

(A|B) = 4Re (7.61)Z 1

0

df Ã⇤
a(f)[S

�1

n (f)]abBb(f) ,

which generalizes eq. (7.46). See the
Further Reading for details.

p(n0) = N exp{�(n0|n0)/2} . (7.62)

We are assuming that the output of the detector satisfies the condition
for claiming detection, i.e. it is of the form s(t) = h(t; ✓t)+n0(t), where
n0(t) is the specific realization of the noise in correspondence to this
event, and ✓t is the (unknown) true value of the parameters ✓. The
likelihood function for the observed output s(t), given the hypothesis
that there is a GW signal corresponding to the parameters ✓t, is obtained
plugging n0 = s� h(✓t) into eq. (7.62),

⇤(s|✓t) = N exp

⇢
�
1

2
(s� h(✓t)|s� h(✓t))

�
, (7.63)
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We now ask what is the filter K(t) that maximizes S/N , for a given
h(t). This variational problem is elegantly solved by defining the scalar
product between two real functions A(t) and B(t), by

(A|B) = Re

Z 1

�1
df

Ã⇤(f)B̃(f)

(1/2)Sn(f)

= 4Re

Z 1

0
df

Ã⇤(f)B̃(f)

Sn(f)
, (7.46)

where Re denotes the real part, and the second line holds because we
take A(t) and B(t) to be real functions, so that Ã(�f) = Ã⇤(f) (recall
also that Sn(�f) = Sn(f)). Since Sn(f) > 0, this scalar product is
positive definite. Then eq. (7.45) can be written as

S

N
=

(u|h)

(u|u)1/2
. (7.47)

where u(t) is the function whose Fourier transform is

ũ(f) =
1

2
Sn(f)K̃(f) . (7.48)

In this form, the solution is clear. We are searching for the “vector”
of unit norm n̂ = u/(u|u)1/2, such that its scalar product with the
“vector” h is maximum. This is obtained choosing n̂ and h parallel, i.e.
ũ(f) proportional to h̃(f), so we get

K̃(f) = const.
h̃(f)

Sn(f)
. (7.49)

The constant is arbitrary, since rescaling ŝ by an overall factor does not
change its signal-to-noise ratio. Equation (7.49) defines the matched
filter (or Wiener filter).7 In particular, if we are looking for a signal h(t) 7It is also common in the literature

to write eq. (7.41) in the form ŝ =R1
�1 dt s(t)G(�t), and to call G(t) the

filter function. So G(t) = K(�t) and
G̃(f) ⇠ h̃⇤(f)/Sn(f).

embedded into white noise, so that S̃n(f) is a constant, then the best
filter is provided by the signal itself, which is the filtering discussed in
eq. (7.38). However, when S̃n(f) is not flat, eq. (7.49) tells us that we
must weight less the frequency region where the detector is more noisy,
a very natural result.

Inserting the solution (7.49) into eq. (7.48) we get ũ = const. ⇥ h̃.
Plugging this into eq. (7.47), the overall constant cancels and we get the
optimal value of S/N , ✓

S

N

◆
= (h|h)1/2 , (7.50)

that is ✓
S

N

◆2

= 4

Z 1

0
df

|h̃(f)|2

Sn(f)
, (7.51)

which is the optimal value of the signal-to-noise ratio.8 The above equa-

8Recall from Section 7.1 that our
Sn(f) is single-sided. In terms of the
double-sided spectral density, defined
after eq. (7.13), we have (S/N)2 =R1
�1 df |h̃(f)|2/Sdouble sided

n (f).tions are completely general, and independent of the form of h̃(f). In
Sections 7.5–7.8 we will apply them to some specific signals.

Likelihood
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• Use of stochastic samplers as MCMC or Nested Sampling


• Many evaluations of the likelihood 


• Drawbacks:


• Noise is not stationary and gaussian (+glitches, gaps, etc.)


• Very slow!
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Simulation-based inference
Neural density estimation

2

against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
larizations1. The latter can be decomposed as h+�ih⇥ =P
`m h`m(t)�2Y`m(◆,�), where �2Y`m(◆,�) are the spin

weighted spherical harmonics, which depend on the di-
rection angles (◆,�) of the source relative to the detector.
In the ringdown, each multipole component can be ex-
pressed as a linear combination of QNMs as

h`m(t) =
1X

n=0

A`mne
i�`mn�(i!`mn+⌧

�1
`mn)(t�t0) , (1)

where we have neglected the mixing between modes with
the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤

`�m. The integer n labels the fundamen-
tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].

B. Simulation-based inference

SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of

Q
n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
PN

n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:

p(✓|x) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (2)

The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
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the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤
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tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].
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SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of
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n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
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n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:

p(✓|x) = q
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The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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II. METHOD

A. The model

The response of a detector to the GW signal is given
by h(t) = F+h++F⇥h⇥, where F+,⇥(↵, �, ) are the an-
tenna pattern functions (with ↵, �, the right ascension,
declination and polarization angles) and h+,⇥ the two
GW polarizations. In GR the latter can be decomposed
as h+ + ih⇥ =

P
`m h`m(t)2Y`m(◆,�), where 2Y`m(◆,�)

are the spin weighted spherical harmonics which depend
on the direction of the source with respect to the detec-
tor. Each multipolar component is given by the QNMs
as

h`m(t) =
X

n

A`mne
i�`mn+(i!`mn�⌧�1

`mn)(t�t0) , (1)

where we neglect the mixing between modes of the same
m but di↵erent ` and assume that all modes start at
the same time t0. We also assume aligned progenitor
spins with respect to the orbital angular momentum of
the binary, and therefore the waveform amplitudes satisfy
h`m = h⇤

`�m. The integer n labels the fundamental mode
(n = 0) and the subsequent overtones (n = 1, 2, . . . ), in
order of decreasing dumping times. Frequencies !`mn

and dumping times ⌧`mn are functions of the remnant
mass Mf and dimensionless spin �f only and can be
computed using perturbation theory [23]; we employ the
tabulated values given in [24]. The amplitudes A`mn and
phases �`mn, instead, describe how much every mode is
excited during the merger and therefore cannot be com-
puted in perturbation theory, they need to be treated as
parameters to estimate.

Following [2, 3], in our analysis we consider only the
fundamental mode (n = 0) and first overtone (n = 1) of
the dominant ` = m = 2 harmonic, since higher multi-
poles are subdominant [25, 26].

B. Simulation-based inference

Simulation-based inference (see [27] for a recent re-
view) is a modern approach to Approximate Bayesian
Computation which uses simulations from the model to
estimate an approximate likelihood [28], likelihood-to-
evidence ratio [29–32], posterior [33, 34]. In the context
of GW physics, it has been introduced in a seminal paper
[35] and then successively improved in a series of papers
[36–41] to reach state-of-the-art parameter estimation for
GW events from the first LIGO-Virgo GW transient cat-
alog.

1. Neural Posterior Estimation

In this paper we use a neural network to train a flexible
family of conditional densities q�(✓|x) (with � distribu-
tion parameters) to learn a parametric approximation of

the posterior p(✓|x). The training is based on a theo-
rem [33] which states that, for a set of N pairs {✓n,xn},
where {✓n} is a set of parameters drawn from the prior
⇡(✓) and {xn} is the corresponding set of simulated data
(and hence distributed with the unknown likelihood), in
the limit N ! 1 the probability

Q
n q�(✓n|xn) is max-

imised with respect to � if and only if q�(✓|x) / p(✓|x).
The mapping between x and � is learned by adjusting
the weights  of a neural network F , where � = F (x, ),
and the training proceeds by maximising the proba-
bility of simulation parameters under the correspond-
ing simulation, namely minimising the cross-entropy loss
L( ) = �

PN
n=1 log q�(xn, )(✓n).

It is convenient to use a normalised probability distri-
bution dividing the conditional density by

R
✓ q�(✓). Be-

ing this integral most of the times intractable, Ref. [34]
has proposed an approach which only considers a finite
subset of M parameter vectors {✓m} for each simula-
tion, and replaces the integral by the sum over this sub-
set. They showed that, if each simulation’s parameter
is drawn from a di↵erent subset, and the union of sub-
sets covers the full prior space, then the normalisation is
satisfied. The loss is replaced therefore by

L( ) = �
NX

n=1

log
q�(xn, )(✓n)/⇡(✓n)PM

m=1 q�(xn, )(✓m)/⇡(✓m)
, (2)

where ✓n 2 {✓m}.
This approach has an intuitive interpretation as a mul-

tiple choice solver, namely the network is trained to
recognise which of the element in the subset {✓m} has
generated xn. In this way the network assigns a proba-
bility to each ✓m and, doing it for multiple subsets, we
can infer continuous posteriors.

2. Truncated priors

For the posterior estimation described above, the per-
formance of the neural network crucially depends on the
amount of training it receives, namely on how densely
the parameter space is sampled to produce training ex-
amples. For this reason, several iterative refinements of
the posterior estimate have been proposed and go under
the name of sequential neural density estimation. These
approaches focus the training onto regions of parameter
space compatible with a specific target dataset by succes-
sively restricting the prior range from which training ex-
amples are generated. Some of these methods [33, 34, 42]
use a previous posterior estimate as proposal for gener-
ating subsequent training data, facing in di↵erent ways
the problem that the k-estimated posterior is related to
the (k + 1)-one by

pk(✓|x) = pk+1(✓|x)
⇡k(✓)zk+1(x)

⇡k+1(✓)zk(x)
, (3)

where zk(x) =
R
✓ p(x|✓)⇡k(✓).
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fundamental mode (n = 0) and first overtone (n = 1) of
the dominant ` = m = 2 harmonic, since higher multi-
poles are subdominant [25, 26].

B. Simulation-based inference

Simulation-based inference (see [27] for a recent re-
view) is a modern approach to Approximate Bayesian
Computation which uses simulations from the model to
estimate an approximate likelihood [28], likelihood-to-
evidence ratio [29–32], posterior [33, 34]. In the context
of GW physics, it has been introduced in a seminal paper
[35] and then successively improved in a series of papers
[36–41] to reach state-of-the-art parameter estimation for
GW events from the first LIGO-Virgo GW transient cat-
alog.

1. Neural Posterior Estimation

In this paper we use a neural network to train a flexible
family of conditional densities q�(✓|x) (with � distribu-
tion parameters) to learn a parametric approximation of

the posterior p(✓|x). The training is based on a theo-
rem [33] which states that, for a set of N pairs {✓n,xn},
where {✓n} is a set of parameters drawn from the prior
⇡(✓) and {xn} is the corresponding set of simulated data
(and hence distributed with the unknown likelihood), in
the limit N ! 1 the probability

Q
n q�(✓n|xn) is max-

imised with respect to � if and only if q�(✓|x) / p(✓|x).
The mapping between x and � is learned by adjusting
the weights  of a neural network F , where � = F (x, ),
and the training proceeds by maximising the proba-
bility of simulation parameters under the correspond-
ing simulation, namely minimising the cross-entropy loss
L( ) = �

PN
n=1 log q�(xn, )(✓n).

It is convenient to use a normalised probability distri-
bution dividing the conditional density by

R
✓ q�(✓). Be-

ing this integral most of the times intractable, Ref. [34]
has proposed an approach which only considers a finite
subset of M parameter vectors {✓m} for each simula-
tion, and replaces the integral by the sum over this sub-
set. They showed that, if each simulation’s parameter
is drawn from a di↵erent subset, and the union of sub-
sets covers the full prior space, then the normalisation is
satisfied. The loss is replaced therefore by

L( ) = �
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q�(xn, )(✓n)/⇡(✓n)PM

m=1 q�(xn, )(✓m)/⇡(✓m)
, (2)

where ✓n 2 {✓m}.
This approach has an intuitive interpretation as a mul-

tiple choice solver, namely the network is trained to
recognise which of the element in the subset {✓m} has
generated xn. In this way the network assigns a proba-
bility to each ✓m and, doing it for multiple subsets, we
can infer continuous posteriors.

2. Truncated priors

For the posterior estimation described above, the per-
formance of the neural network crucially depends on the
amount of training it receives, namely on how densely
the parameter space is sampled to produce training ex-
amples. For this reason, several iterative refinements of
the posterior estimate have been proposed and go under
the name of sequential neural density estimation. These
approaches focus the training onto regions of parameter
space compatible with a specific target dataset by succes-
sively restricting the prior range from which training ex-
amples are generated. Some of these methods [33, 34, 42]
use a previous posterior estimate as proposal for gener-
ating subsequent training data, facing in di↵erent ways
the problem that the k-estimated posterior is related to
the (k + 1)-one by

pk(✓|x) = pk+1(✓|x)
⇡k(✓)zk+1(x)

⇡k+1(✓)zk(x)
, (3)

where zk(x) =
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On the contrary, we employ a truncation scheme [32]
that does not modify the shape of the prior distribution
but merely restricts its support and hence introduces to it
only a uniform re-normalisation. At each stage, the trun-
cated (excluded) region – determined independently for
each parameter – is that in which the posterior density
is deemed negligible. Specifically, we restrict the prior
enclosing the highest probability density region that con-
tains 5� probability mass from the approximate posterior
evaluated for the target data. After each truncation, a
new network is initialised and trained on samples gener-
ated with the newly constrained priors. We stop truncat-
ing when none of the parameter ranges shrink by more
than a factor of 2.

3. Masked Autoregressive Flow

For the density estimation we rely on a type of normal-
ising flow which stacks a series of autoregressive mod-
els, dubbed Masked Autoregressive Flow (MAF) [43].
Autoregressive models [44] decompose the joint density
as a product of one-dimensional conditionals as p(✓) =Q

i q�i(✓i|✓1:i�1), and model each conditional as a para-
metric density whose parameters are a function of a hid-
den state �i which in turn is a function of the previ-
ous hidden state �i�1 and the current input variable
✓i. In particular, MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [45], which e�ciently enforces the autoregres-
sive property (i.e. the ordering of the variables) with
a single forward pass, by dropping out connections by
multiplying the weight matrices of a fully-connected au-
toencoder with suitably constructed binary masks. An
autoregressive model can be equivalently interpreted as
a normalising flow (see [43] for details).

Normalising flows [46] transform a base density q(#)
(e.g. a standard Gaussian) into the target density p(✓)
by an invertible transformation ✓ = f(#) with tractable
Jacobian:

p(✓) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (4)

The flow can also be made deeper by composing multi-
ple invertible transformations (as it is usually done). In
practice, MAF uses MADE with Gaussian conditionals
as the building layer of the flow.

For our purposes, autoregressive modelling extends
naturally to conditional density estimation as p(✓|x) =Q

i q�i(✓i|✓1:i�1,x), simply augmenting its set of input
variables with x and only modelling the conditionals that
correspond to ✓. In MADE, this corresponds in not drop-
ping any connections from the x inputs to the rest of the
network.
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Appendix A: Technical Details

The synthetic data that we analyse are made by in-
jecting a signal – computed with the model described in
Sec. II A – into chunks of real noise taken from 32 sec-
onds of LIGO Hanford data around GW150914 [47]. We
use a sample rate of 4096 Hz and analyse 0.1 seconds of
data. We always perform a single detector analysis (em-
ploying LIGO Hanford), and only for GW150914 we also
consider the event in LIGO Livingston. For GW150914,
we take as starting time at the LIGO Hanford detector
t0 = tpeak = 1126259462.42323 GPS, as estimated in [3],
and compute the time of arrival in LIGO Livingston with
the LALSuite library [48]. The antenna pattern functions
are also provided by the LALSuite library [48], and we
fix the sky position of the source always as in GW150914
[], namely ↵ = 1.95 rad, � = �1.27 rad,  = 0.82 rad
and inclination ◆ = ⇡ rad, � = 0. We take uniform priors
on all parameters with Mf 2 [50, 100]M�, �f 2 [0, 1],
A22n 2 [0, 5]Aref, �22n 2 [0, 2⇡] and change Aref in the
interval [1, 15]10�20 according to the SNR we consider.

We perform our analysis in the frequency domain and
apply a band-pass filter between 100 and 650 Hz. This
reduced range of frequencies covers completely the ring-
down signal for masses and spins in our prior space, and
allows us to avoid any compression of the data to re-
duce their dimensionality. To produce the training set
coherently with the data that we analyse, we first gen-
erate the strain data in the time domain and then we
transform to the frequency domain. We generate a dif-
ferent noise realisation for each element of the training
set from the PSD provided by the LVK collaboration for
32 seconds of LIGO Hanford (Livingston) data around
GW150914 [47]. We inject the signal as for the model
in Sec. II A and, after cutting the data 0.1s after the
starting time, we apply a tukey window function with
↵ = 1/70 and perform a Real Fast Fourier Transform
(RFFT) followed by whitening. Finally we concatenate
the Real and Imaginary part of the RFFT to compose
our 112 bin long dataset. The very sharp window func-
tion that we use, introduces contamination in the form of
spectral leakage, however, since this happens coherently
in the training set and in the observable, in our case this

3

On the contrary, we employ a truncation scheme [32]
that does not modify the shape of the prior distribution
but merely restricts its support and hence introduces to it
only a uniform re-normalisation. At each stage, the trun-
cated (excluded) region – determined independently for
each parameter – is that in which the posterior density
is deemed negligible. Specifically, we restrict the prior
enclosing the highest probability density region that con-
tains 5� probability mass from the approximate posterior
evaluated for the target data. After each truncation, a
new network is initialised and trained on samples gener-
ated with the newly constrained priors. We stop truncat-
ing when none of the parameter ranges shrink by more
than a factor of 2.

3. Masked Autoregressive Flow

For the density estimation we rely on a type of normal-
ising flow which stacks a series of autoregressive mod-
els, dubbed Masked Autoregressive Flow (MAF) [43].
Autoregressive models [44] decompose the joint density
as a product of one-dimensional conditionals as p(✓) =Q

i q�i(✓i|✓1:i�1), and model each conditional as a para-
metric density whose parameters are a function of a hid-
den state �i which in turn is a function of the previ-
ous hidden state �i�1 and the current input variable
✓i. In particular, MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [45], which e�ciently enforces the autoregres-
sive property (i.e. the ordering of the variables) with
a single forward pass, by dropping out connections by
multiplying the weight matrices of a fully-connected au-
toencoder with suitably constructed binary masks. An
autoregressive model can be equivalently interpreted as
a normalising flow (see [43] for details).

Normalising flows [46] transform a base density q(#)
(e.g. a standard Gaussian) into the target density p(✓)
by an invertible transformation ✓ = f(#) with tractable
Jacobian:

p(✓) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (4)

The flow can also be made deeper by composing multi-
ple invertible transformations (as it is usually done). In
practice, MAF uses MADE with Gaussian conditionals
as the building layer of the flow.

For our purposes, autoregressive modelling extends
naturally to conditional density estimation as p(✓|x) =Q

i q�i(✓i|✓1:i�1,x), simply augmenting its set of input
variables with x and only modelling the conditionals that
correspond to ✓. In MADE, this corresponds in not drop-
ping any connections from the x inputs to the rest of the
network.

III. RESULTS

IV. DISCUSSION

ACKNOWLEDGMENTS

MC and EB acknowledge support from the Euro-
pean Union’s H2020 ERC Consolidator Grant “GRav-
ity from Astrophysical to Microscopic Scales” (Grant
No. GRAMS-815673) and the EU Horizon 2020 Research
and Innovation Programme under the Marie Sklodowska-
Curie Grant Agreement No. 101007855.

Appendix A: Technical Details

The synthetic data that we analyse are made by in-
jecting a signal – computed with the model described in
Sec. II A – into chunks of real noise taken from 32 sec-
onds of LIGO Hanford data around GW150914 [47]. We
use a sample rate of 4096 Hz and analyse 0.1 seconds of
data. We always perform a single detector analysis (em-
ploying LIGO Hanford), and only for GW150914 we also
consider the event in LIGO Livingston. For GW150914,
we take as starting time at the LIGO Hanford detector
t0 = tpeak = 1126259462.42323 GPS, as estimated in [3],
and compute the time of arrival in LIGO Livingston with
the LALSuite library [48]. The antenna pattern functions
are also provided by the LALSuite library [48], and we
fix the sky position of the source always as in GW150914
[], namely ↵ = 1.95 rad, � = �1.27 rad,  = 0.82 rad
and inclination ◆ = ⇡ rad, � = 0. We take uniform priors
on all parameters with Mf 2 [50, 100]M�, �f 2 [0, 1],
A22n 2 [0, 5]Aref, �22n 2 [0, 2⇡] and change Aref in the
interval [1, 15]10�20 according to the SNR we consider.

We perform our analysis in the frequency domain and
apply a band-pass filter between 100 and 650 Hz. This
reduced range of frequencies covers completely the ring-
down signal for masses and spins in our prior space, and
allows us to avoid any compression of the data to re-
duce their dimensionality. To produce the training set
coherently with the data that we analyse, we first gen-
erate the strain data in the time domain and then we
transform to the frequency domain. We generate a dif-
ferent noise realisation for each element of the training
set from the PSD provided by the LVK collaboration for
32 seconds of LIGO Hanford (Livingston) data around
GW150914 [47]. We inject the signal as for the model
in Sec. II A and, after cutting the data 0.1s after the
starting time, we apply a tukey window function with
↵ = 1/70 and perform a Real Fast Fourier Transform
(RFFT) followed by whitening. Finally we concatenate
the Real and Imaginary part of the RFFT to compose
our 112 bin long dataset. The very sharp window func-
tion that we use, introduces contamination in the form of
spectral leakage, however, since this happens coherently
in the training set and in the observable, in our case this

3

On the contrary, we employ a truncation scheme [32]
that does not modify the shape of the prior distribution
but merely restricts its support and hence introduces to it
only a uniform re-normalisation. At each stage, the trun-
cated (excluded) region – determined independently for
each parameter – is that in which the posterior density
is deemed negligible. Specifically, we restrict the prior
enclosing the highest probability density region that con-
tains 5� probability mass from the approximate posterior
evaluated for the target data. After each truncation, a
new network is initialised and trained on samples gener-
ated with the newly constrained priors. We stop truncat-
ing when none of the parameter ranges shrink by more
than a factor of 2.

3. Masked Autoregressive Flow

For the density estimation we rely on a type of normal-
ising flow which stacks a series of autoregressive mod-
els, dubbed Masked Autoregressive Flow (MAF) [43].
Autoregressive models [44] decompose the joint density
as a product of one-dimensional conditionals as p(✓) =Q

i q�i(✓i|✓1:i�1), and model each conditional as a para-
metric density whose parameters are a function of a hid-
den state �i which in turn is a function of the previ-
ous hidden state �i�1 and the current input variable
✓i. In particular, MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [45], which e�ciently enforces the autoregres-
sive property (i.e. the ordering of the variables) with
a single forward pass, by dropping out connections by
multiplying the weight matrices of a fully-connected au-
toencoder with suitably constructed binary masks. An
autoregressive model can be equivalently interpreted as
a normalising flow (see [43] for details).

Normalising flows [46] transform a base density q(#)
(e.g. a standard Gaussian) into the target density p(✓)
by an invertible transformation ✓ = f(#) with tractable
Jacobian:

p(✓) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (4)

The flow can also be made deeper by composing multi-
ple invertible transformations (as it is usually done). In
practice, MAF uses MADE with Gaussian conditionals
as the building layer of the flow.

For our purposes, autoregressive modelling extends
naturally to conditional density estimation as p(✓|x) =Q

i q�i(✓i|✓1:i�1,x), simply augmenting its set of input
variables with x and only modelling the conditionals that
correspond to ✓. In MADE, this corresponds in not drop-
ping any connections from the x inputs to the rest of the
network.

III. RESULTS

IV. DISCUSSION

ACKNOWLEDGMENTS

MC and EB acknowledge support from the Euro-
pean Union’s H2020 ERC Consolidator Grant “GRav-
ity from Astrophysical to Microscopic Scales” (Grant
No. GRAMS-815673) and the EU Horizon 2020 Research
and Innovation Programme under the Marie Sklodowska-
Curie Grant Agreement No. 101007855.

Appendix A: Technical Details

The synthetic data that we analyse are made by in-
jecting a signal – computed with the model described in
Sec. II A – into chunks of real noise taken from 32 sec-
onds of LIGO Hanford data around GW150914 [47]. We
use a sample rate of 4096 Hz and analyse 0.1 seconds of
data. We always perform a single detector analysis (em-
ploying LIGO Hanford), and only for GW150914 we also
consider the event in LIGO Livingston. For GW150914,
we take as starting time at the LIGO Hanford detector
t0 = tpeak = 1126259462.42323 GPS, as estimated in [3],
and compute the time of arrival in LIGO Livingston with
the LALSuite library [48]. The antenna pattern functions
are also provided by the LALSuite library [48], and we
fix the sky position of the source always as in GW150914
[], namely ↵ = 1.95 rad, � = �1.27 rad,  = 0.82 rad
and inclination ◆ = ⇡ rad, � = 0. We take uniform priors
on all parameters with Mf 2 [50, 100]M�, �f 2 [0, 1],
A22n 2 [0, 5]Aref, �22n 2 [0, 2⇡] and change Aref in the
interval [1, 15]10�20 according to the SNR we consider.

We perform our analysis in the frequency domain and
apply a band-pass filter between 100 and 650 Hz. This
reduced range of frequencies covers completely the ring-
down signal for masses and spins in our prior space, and
allows us to avoid any compression of the data to re-
duce their dimensionality. To produce the training set
coherently with the data that we analyse, we first gen-
erate the strain data in the time domain and then we
transform to the frequency domain. We generate a dif-
ferent noise realisation for each element of the training
set from the PSD provided by the LVK collaboration for
32 seconds of LIGO Hanford (Livingston) data around
GW150914 [47]. We inject the signal as for the model
in Sec. II A and, after cutting the data 0.1s after the
starting time, we apply a tukey window function with
↵ = 1/70 and perform a Real Fast Fourier Transform
(RFFT) followed by whitening. Finally we concatenate
the Real and Imaginary part of the RFFT to compose
our 112 bin long dataset. The very sharp window func-
tion that we use, introduces contamination in the form of
spectral leakage, however, since this happens coherently
in the training set and in the observable, in our case this

3

On the contrary, we employ a truncation scheme [32]
that does not modify the shape of the prior distribution
but merely restricts its support and hence introduces to it
only a uniform re-normalisation. At each stage, the trun-
cated (excluded) region – determined independently for
each parameter – is that in which the posterior density
is deemed negligible. Specifically, we restrict the prior
enclosing the highest probability density region that con-
tains 5� probability mass from the approximate posterior
evaluated for the target data. After each truncation, a
new network is initialised and trained on samples gener-
ated with the newly constrained priors. We stop truncat-
ing when none of the parameter ranges shrink by more
than a factor of 2.

3. Masked Autoregressive Flow

For the density estimation we rely on a type of normal-
ising flow which stacks a series of autoregressive mod-
els, dubbed Masked Autoregressive Flow (MAF) [43].
Autoregressive models [44] decompose the joint density
as a product of one-dimensional conditionals as p(✓) =Q

i q�i(✓i|✓1:i�1), and model each conditional as a para-
metric density whose parameters are a function of a hid-
den state �i which in turn is a function of the previ-
ous hidden state �i�1 and the current input variable
✓i. In particular, MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [45], which e�ciently enforces the autoregres-
sive property (i.e. the ordering of the variables) with
a single forward pass, by dropping out connections by
multiplying the weight matrices of a fully-connected au-
toencoder with suitably constructed binary masks. An
autoregressive model can be equivalently interpreted as
a normalising flow (see [43] for details).

Normalising flows [46] transform a base density q(#)
(e.g. a standard Gaussian) into the target density p(✓)
by an invertible transformation ✓ = f(#) with tractable
Jacobian:

p(✓) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (4)

The flow can also be made deeper by composing multi-
ple invertible transformations (as it is usually done). In
practice, MAF uses MADE with Gaussian conditionals
as the building layer of the flow.

For our purposes, autoregressive modelling extends
naturally to conditional density estimation as p(✓|x) =Q

i q�i(✓i|✓1:i�1,x), simply augmenting its set of input
variables with x and only modelling the conditionals that
correspond to ✓. In MADE, this corresponds in not drop-
ping any connections from the x inputs to the rest of the
network.

III. RESULTS

IV. DISCUSSION

ACKNOWLEDGMENTS

MC and EB acknowledge support from the Euro-
pean Union’s H2020 ERC Consolidator Grant “GRav-
ity from Astrophysical to Microscopic Scales” (Grant
No. GRAMS-815673) and the EU Horizon 2020 Research
and Innovation Programme under the Marie Sklodowska-
Curie Grant Agreement No. 101007855.

Appendix A: Technical Details

The synthetic data that we analyse are made by in-
jecting a signal – computed with the model described in
Sec. II A – into chunks of real noise taken from 32 sec-
onds of LIGO Hanford data around GW150914 [47]. We
use a sample rate of 4096 Hz and analyse 0.1 seconds of
data. We always perform a single detector analysis (em-
ploying LIGO Hanford), and only for GW150914 we also
consider the event in LIGO Livingston. For GW150914,
we take as starting time at the LIGO Hanford detector
t0 = tpeak = 1126259462.42323 GPS, as estimated in [3],
and compute the time of arrival in LIGO Livingston with
the LALSuite library [48]. The antenna pattern functions
are also provided by the LALSuite library [48], and we
fix the sky position of the source always as in GW150914
[], namely ↵ = 1.95 rad, � = �1.27 rad,  = 0.82 rad
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A22n 2 [0, 5]Aref, �22n 2 [0, 2⇡] and change Aref in the
interval [1, 15]10�20 according to the SNR we consider.
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apply a band-pass filter between 100 and 650 Hz. This
reduced range of frequencies covers completely the ring-
down signal for masses and spins in our prior space, and
allows us to avoid any compression of the data to re-
duce their dimensionality. To produce the training set
coherently with the data that we analyse, we first gen-
erate the strain data in the time domain and then we
transform to the frequency domain. We generate a dif-
ferent noise realisation for each element of the training
set from the PSD provided by the LVK collaboration for
32 seconds of LIGO Hanford (Livingston) data around
GW150914 [47]. We inject the signal as for the model
in Sec. II A and, after cutting the data 0.1s after the
starting time, we apply a tukey window function with
↵ = 1/70 and perform a Real Fast Fourier Transform
(RFFT) followed by whitening. Finally we concatenate
the Real and Imaginary part of the RFFT to compose
our 112 bin long dataset. The very sharp window func-
tion that we use, introduces contamination in the form of
spectral leakage, however, since this happens coherently
in the training set and in the observable, in our case this
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On the contrary, we employ a truncation scheme [32]
that does not modify the shape of the prior distribution
but merely restricts its support and hence introduces to it
only a uniform re-normalisation. At each stage, the trun-
cated (excluded) region – determined independently for
each parameter – is that in which the posterior density
is deemed negligible. Specifically, we restrict the prior
enclosing the highest probability density region that con-
tains 5� probability mass from the approximate posterior
evaluated for the target data. After each truncation, a
new network is initialised and trained on samples gener-
ated with the newly constrained priors. We stop truncat-
ing when none of the parameter ranges shrink by more
than a factor of 2.

3. Masked Autoregressive Flow

For the density estimation we rely on a type of normal-
ising flow which stacks a series of autoregressive mod-
els, dubbed Masked Autoregressive Flow (MAF) [43].
Autoregressive models [44] decompose the joint density
as a product of one-dimensional conditionals as p(✓) =Q

i q�i(✓i|✓1:i�1), and model each conditional as a para-
metric density whose parameters are a function of a hid-
den state �i which in turn is a function of the previ-
ous hidden state �i�1 and the current input variable
✓i. In particular, MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [45], which e�ciently enforces the autoregres-
sive property (i.e. the ordering of the variables) with
a single forward pass, by dropping out connections by
multiplying the weight matrices of a fully-connected au-
toencoder with suitably constructed binary masks. An
autoregressive model can be equivalently interpreted as
a normalising flow (see [43] for details).

Normalising flows [46] transform a base density q(#)
(e.g. a standard Gaussian) into the target density p(✓)
by an invertible transformation ✓ = f(#) with tractable
Jacobian:

p(✓) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (4)

The flow can also be made deeper by composing multi-
ple invertible transformations (as it is usually done). In
practice, MAF uses MADE with Gaussian conditionals
as the building layer of the flow.

For our purposes, autoregressive modelling extends
naturally to conditional density estimation as p(✓|x) =Q

i q�i(✓i|✓1:i�1,x), simply augmenting its set of input
variables with x and only modelling the conditionals that
correspond to ✓. In MADE, this corresponds in not drop-
ping any connections from the x inputs to the rest of the
network.

III. RESULTS

IV. DISCUSSION
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Figure 1: (a) The density to be learnt, defined as p(x1, x2) = N (x2 | 0, 4)N
�
x1 | 1

4x
2
2, 1

�
. (b) The

density learnt by a MADE with order (x1, x2) and Gaussian conditionals. Scatter plot shows the train
data transformed into random numbers u; the non-Gaussian distribution indicates that the model is a
poor fit. (c) Learnt density and transformed train data of a 5 layer MAF with the same order (x1, x2).

In order for Equation (1) to be tractable, the transformation f must be constructed such that (a) it
is easy to invert, and (b) the determinant of its Jacobian is easy to compute. An important point is
that if transformations f1 and f2 have the above properties, then their composition f1 � f2 also has
these properties. In other words, the transformation f can be made deeper by composing multiple
instances of it, and the result will still be a valid normalizing flow.

There have been various approaches in developing normalizing flows. An early example is Gaussian-
ization [4], which is based on successive application of independent component analysis. Enforcing
invertibility with nonsingular weight matrices has been proposed [3, 29], however in such approaches
calculating the determinant of the Jacobian scales cubicly with data dimensionality in general. Pla-
nar/radial flows [27] and Inverse Autoregressive Flow (IAF) [16] are models whose Jacobian is
tractable by design. However, they were developed primarily for variational inference and are not
well-suited for density estimation, as they can only efficiently calculate the density of their own sam-
ples and not of externally provided datapoints. The Non-linear Independent Components Estimator
(NICE) [5] and its successor Real NVP [6] have a tractable Jacobian and are also suitable for density
estimation. IAF, NICE and Real NVP are discussed in more detail in Section 3.

3 Masked Autoregressive Flow

3.1 Autoregressive models as normalizing flows

Consider an autoregressive model whose conditionals are parameterized as single Gaussians. That is,
the i

th conditional is given by

p(xi |x1:i�1) = N
�
xi |µi, (exp↵i)

2
�

where µi = fµi(x1:i�1) and ↵i = f↵i(x1:i�1). (2)

In the above, fµi and f↵i are unconstrained scalar functions that compute the mean and log standard
deviation of the i

th conditional given all previous variables. We can generate data from the above
model using the following recursion:

xi = ui exp↵i + µi where µi = fµi(x1:i�1), ↵i = f↵i(x1:i�1) and ui ⇠ N (0, 1). (3)

In the above, u = (u1, u2, . . . , uI) is the vector of random numbers the model uses internally to
generate data, typically by making calls to a random number generator often called randn().

Equation (3) provides an alternative characterization of the autoregressive model as a transformation
f from the space of random numbers u to the space of data x. That is, we can express the model
as x = f(u) where u ⇠ N (0, I). By construction, f is easily invertible. Given a datapoint x, the
random numbers u that were used to generate it are obtained by the following recursion:

ui = (xi � µi) exp(�↵i) where µi = fµi(x1:i�1) and ↵i = f↵i(x1:i�1). (4)

Due to the autoregressive structure, the Jacobian of f�1 is triangular by design, hence its absolute
determinant can be easily obtained as follows:

����det
✓
@f

�1

@x

◆���� = exp
⇣
�
X

i
↵i

⌘
where ↵i = f↵i(x1:i�1). (5)
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-

<latexit sha1_base64="xzqznnSKdovJte9nYbVwUczETiE=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZpMh81hmZoWw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFCWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRqWa0BZRXOlOhA3lTNKWZZbTTqIpFhGn7Wh8m/vtJ6oNU/LBThIaCjyULGYE21zqGSb61Zpf92dAyyQoSA0KNPvVr95AkVRQaQnHxnQDP7FhhrVlhNNppZcammAyxkPadVRiQU2YzW6dohOnDFCstCtp0Uz9PZFhYcxERK5TYDsyi14u/ud1UxtfhxmTSWqpJPNFccqRVSh/HA2YpsTyiSOYaOZuRWSENSbWxVNxIQSLLy+Tx7N6cFm/uD+vNW6KOMpwBMdwCgFcQQPuoAktIDCCZ3iFN094L9679zFvLXnFzCH8gff5AyLvjlE=</latexit>⇠

2

against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
larizations1. The latter can be decomposed as h+�ih⇥ =P
`m h`m(t)�2Y`m(◆,�), where �2Y`m(◆,�) are the spin

weighted spherical harmonics, which depend on the di-
rection angles (◆,�) of the source relative to the detector.
In the ringdown, each multipole component can be ex-
pressed as a linear combination of QNMs as

h`m(t) =
1X

n=0

A`mne
i�`mn�(i!`mn+⌧

�1
`mn)(t�t0) , (1)

where we have neglected the mixing between modes with
the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤

`�m. The integer n labels the fundamen-
tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].

B. Simulation-based inference

SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of

Q
n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
PN

n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:

p(✓|x) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (2)

The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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3.3.1 Truncation and latent variables

In principle, the priors of latent variables can also be truncated it-
eratively, which would tailor the simulator output to the concrete
properties of the observed SNæ Ia. However, the e�ective priors of
variables in intermediate layers of a hierarchical model (resulting
from marginalising the upstream model) are typically intractable
or hard to sample from directly—this is precisely why the forward
simulator is implemented in layers. Hence, sampling from a con-
strained latent-variable prior usually requires a rejection strategy,
whose wastefulness increases the more the prior is truncated.

In this work, we do not explicitly restrict the prior ranges of latent
variables. Instead, we only train a ratio estimator for them after
we have constrained the global parameters as much as possible,
i.e. after the last truncation stage. This results in simulations which
resemble the targeted dataset only in terms of the distribution of
latent variables rather than particular values. Naturally, this modifies
the range and shape of the e�ective latent-variable prior. However,
the modifications are restricted to regions where the joint posterior
is negligible (and hence so are all the marginals): restricting the
global parameters can be viewed as a way to enact constraints in high
dimensions.

3.4 Validation and calibration of amortised inference

Neural ratio estimation (NRE) is an amortised technique: after the up-
front cost of training the ratio estimator, inference can be performed
quickly with any number of datasets. Put otherwise, in contrast to
likelihood-based methods that learn the posterior for a given dataset,
ratio estimation learns the procedure to derive a posterior, and this
procedure can be validated (in a Bayesian sense) with collections
of simulated data and/or calibrated so as to produce (frequentist)
confidence regions with guaranteed exact coverage, as we explain
below.

In contrast to other sequential methods, inference using the trunca-
tion scheme described above is still locally amortised since the target
data (and the posterior associated with it) is used during training only
to determine the sequence of constraints in parameter space, while
training data is always sampled according to the prior. Therefore, the
inference network used in each stage of truncation can, and must, be
validated and/or calibrated within the constrained region over which
it has been trained.

3.4.1 Bayesian and frequentist coverage (P–P plots13)

We wish to examine the empirical (i.e. determined from analyses
of simulated data d) coverage properties of an inference procedure
that derives approximate posteriors q(⇥ | d). To do this, we first
associate with each parameter value ⇥0 a credibility W(⇥0, d) as the
approximate posterior probability enclosed by the highest probability
density (HPD) region which has ⇥0 on its boundary:

W(⇥0, d) ⌘

π
�⇥ (⇥0 ,d)

q(⇥ | d) d⇥ , (15)

where the integration is over the region where the approximate pos-
terior density is higher than at ⇥0:

�⇥ (⇥0, d) ⌘ {⇥ : q(⇥ | d) > q(⇥0 | d)}. (16)

13 See e.g. Gibbons & Chakraborti (2010, section 4.8).
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Figure 3. Procedure for obtaining frequentist confidence regions with exact
coverage from an approximate amortised Bayesian posterior. Top: the cred-
ibility W (⇥0, d) associated with a parameter value ⇥0 is the credibility of
the HPD region bounded by ⇥0 for a given (approximate) posterior q, con-
ditioned on data d. Middle: by repeated draws of d at fixed ⇥0, we obtain
samples for W (⇥0, d) , from which we build its empirical cumulative distribu-
tion, F 5 (W |⇥0) (red lines). The credibilities Ŵ (⇥0, W̃) required for regions
to cover ⇥0 with a given frequency W̃ are indicated with green dots and deter-
mined as the W̃th quantiles of F 5 . We obtain the green line in the bottom panel
by repeating this procedure on a grid of ⇥0. Bottom: ⇠⇥0 (d, W̃) , the region
with confidence level W̃, is that in which W (⇥0, d) (red line) is lower than
Ŵ (⇥0, W̃) (green line). For comparison, if q is equal to the true posterior, and
a uniform prior is used, Ŵ (⇥0, W̃) is constant across all ⇥0 and equal to the

target confidence level (purple line). The credible region, �⇥0

⇣
W�1

( W̃, d) , d

⌘
,

then coincides with the confidence region.

See also the top panel of fig. 3 for an illustration. Taking ⇥0 to be the
true parameters used to generate d, we then plot the frequency F(W)
with which HPD regions of di�erent credibility W include (cover)⇥0.
If this empirical coverage is larger than the credibility (F(W) > W), the
approximation is said to be conservative: it covers more frequently
than its credibility; if F(W) < W, on the other hand, it is said to be
under-covering.

In practice, such a plot is built by repeatedly simulating data d

from parameters ⇥0, deriving q(⇥ | d) with the inference procedure
being validated, determining from it the region �⇥ (⇥0, d) where
q(⇥ | d) > q(⇥0 | d), and integrating q(⇥ | d) over it, as illustrated
in the top panel of fig. 3. The cumulative distribution of the W(⇥0, d)
obtained in this way gives the empirical coverage F(W). Full details
are presented in appendix A.
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
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approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
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volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
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3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
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of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.
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q(✓|x)>q(✓0|x)
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0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.
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analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.
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said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.
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empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the
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covered ones. Alternatively, if data are simulated at fixed
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GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.
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By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘
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ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
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plot for each point across the support of the prior. From
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for any given confidence level �̃, as the credibility that has
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erage: for a given observation x, one has to include in the
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This procedure will be used to produce the calibrated
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GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
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the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.
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q(✓|x)>q(✓0|x)
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By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘
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ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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3.3.1 Truncation and latent variables

In principle, the priors of latent variables can also be truncated it-
eratively, which would tailor the simulator output to the concrete
properties of the observed SNæ Ia. However, the e�ective priors of
variables in intermediate layers of a hierarchical model (resulting
from marginalising the upstream model) are typically intractable
or hard to sample from directly—this is precisely why the forward
simulator is implemented in layers. Hence, sampling from a con-
strained latent-variable prior usually requires a rejection strategy,
whose wastefulness increases the more the prior is truncated.

In this work, we do not explicitly restrict the prior ranges of latent
variables. Instead, we only train a ratio estimator for them after
we have constrained the global parameters as much as possible,
i.e. after the last truncation stage. This results in simulations which
resemble the targeted dataset only in terms of the distribution of
latent variables rather than particular values. Naturally, this modifies
the range and shape of the e�ective latent-variable prior. However,
the modifications are restricted to regions where the joint posterior
is negligible (and hence so are all the marginals): restricting the
global parameters can be viewed as a way to enact constraints in high
dimensions.

3.4 Validation and calibration of amortised inference

Neural ratio estimation (NRE) is an amortised technique: after the up-
front cost of training the ratio estimator, inference can be performed
quickly with any number of datasets. Put otherwise, in contrast to
likelihood-based methods that learn the posterior for a given dataset,
ratio estimation learns the procedure to derive a posterior, and this
procedure can be validated (in a Bayesian sense) with collections
of simulated data and/or calibrated so as to produce (frequentist)
confidence regions with guaranteed exact coverage, as we explain
below.

In contrast to other sequential methods, inference using the trunca-
tion scheme described above is still locally amortised since the target
data (and the posterior associated with it) is used during training only
to determine the sequence of constraints in parameter space, while
training data is always sampled according to the prior. Therefore, the
inference network used in each stage of truncation can, and must, be
validated and/or calibrated within the constrained region over which
it has been trained.

3.4.1 Bayesian and frequentist coverage (P–P plots13)

We wish to examine the empirical (i.e. determined from analyses
of simulated data d) coverage properties of an inference procedure
that derives approximate posteriors q(⇥ | d). To do this, we first
associate with each parameter value ⇥0 a credibility W(⇥0, d) as the
approximate posterior probability enclosed by the highest probability
density (HPD) region which has ⇥0 on its boundary:

W(⇥0, d) ⌘

π
�⇥ (⇥0 ,d)

q(⇥ | d) d⇥ , (15)

where the integration is over the region where the approximate pos-
terior density is higher than at ⇥0:

�⇥ (⇥0, d) ⌘ {⇥ : q(⇥ | d) > q(⇥0 | d)}. (16)

13 See e.g. Gibbons & Chakraborti (2010, section 4.8).
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Figure 3. Procedure for obtaining frequentist confidence regions with exact
coverage from an approximate amortised Bayesian posterior. Top: the cred-
ibility W (⇥0, d) associated with a parameter value ⇥0 is the credibility of
the HPD region bounded by ⇥0 for a given (approximate) posterior q, con-
ditioned on data d. Middle: by repeated draws of d at fixed ⇥0, we obtain
samples for W (⇥0, d) , from which we build its empirical cumulative distribu-
tion, F 5 (W |⇥0) (red lines). The credibilities Ŵ (⇥0, W̃) required for regions
to cover ⇥0 with a given frequency W̃ are indicated with green dots and deter-
mined as the W̃th quantiles of F 5 . We obtain the green line in the bottom panel
by repeating this procedure on a grid of ⇥0. Bottom: ⇠⇥0 (d, W̃) , the region
with confidence level W̃, is that in which W (⇥0, d) (red line) is lower than
Ŵ (⇥0, W̃) (green line). For comparison, if q is equal to the true posterior, and
a uniform prior is used, Ŵ (⇥0, W̃) is constant across all ⇥0 and equal to the

target confidence level (purple line). The credible region, �⇥0

⇣
W�1

( W̃, d) , d

⌘
,

then coincides with the confidence region.

See also the top panel of fig. 3 for an illustration. Taking ⇥0 to be the
true parameters used to generate d, we then plot the frequency F(W)
with which HPD regions of di�erent credibility W include (cover)⇥0.
If this empirical coverage is larger than the credibility (F(W) > W), the
approximation is said to be conservative: it covers more frequently
than its credibility; if F(W) < W, on the other hand, it is said to be
under-covering.

In practice, such a plot is built by repeatedly simulating data d

from parameters ⇥0, deriving q(⇥ | d) with the inference procedure
being validated, determining from it the region �⇥ (⇥0, d) where
q(⇥ | d) > q(⇥0 | d), and integrating q(⇥ | d) over it, as illustrated
in the top panel of fig. 3. The cumulative distribution of the W(⇥0, d)
obtained in this way gives the empirical coverage F(W). Full details
are presented in appendix A.
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2. Priors truncation scheme

The performance of the neural network crucially de-
pends on the amount of relevant training examples it
receives. For this reason, several iterative refinements of
the posterior estimate have been proposed, and go under
the name of sequential neural density estimation. These
approaches focus the training on regions of parameter
space compatible with a specific target dataset by suc-
cessively restricting the prior range from which training
examples are generated [43, 44, 49]. We employ a trun-
cation scheme [42] that does not modify the shape of the
prior distribution but merely restricts its support, thus
avoiding the need for later adjustments to the posterior
density estimate. At each stage, we truncate the uniform
prior (independently for each parameter) by excluding
the regions where the posterior density has negligible sup-
port. Specifically, we restrict the prior by keeping only
the highest probability density region that contains a 4�
volume of the approximate posterior (evaluated for the
target data). After each truncation, a new network is ini-
tialized and trained on samples generated with the newly
constrained priors. We stop truncating when none of the
parameter ranges shrinks by more than a factor of two.

3. Validation and calibration

The truncation scheme described above provides a lo-
cally amortized inference, i.e. within the prior region af-
ter the last stage of truncation. This enables calibration
of the resulting posterior regions to produce regions with
guaranteed exact frequentist coverage [42]—a desirable
property to ensure robustness of the scientific conclusions
drawn from the inference.

The credibility � of a parameter value ✓0 is the approx-
imate posterior probability enclosed by the region where
the approximate posterior density, q(✓|x), is higher than
at ✓0, i.e.

�(✓0,x) ⌘
Z

q(✓|x)>q(✓0|x)

q(✓|x) d✓ . (3)

By repeatedly simulating data x0 from ✓0 and deriving
�(✓0,x0), the cumulative distribution of these credibil-
ities gives the empirical coverage C of the approximate
posteriors, i.e. C(�) ⌘

R �
0 P(�0)d�0. The latter repre-

sents the frequency with which regions of di↵erent cred-
ibility include (cover) x0. If C > �, the approximation is
said to be conservative (it covers more frequently than its
credibility), while if C < � it is said to be under-covering.

Bayesian validation consists of checking whether the
empirical coverage matches the credibility calculated
with the exact posterior, by examining deviations from
the diagonal line in a Bayesian P–P plot, on average
across the prior range. However, a diagonal Bayesian
P–P plot is not a su�cient condition because of the

averaging: conservative regions can compensate under-
covered ones. Alternatively, if data are simulated at fixed
parameter values, one can build a frequentist validation
plot for each point across the support of the prior. From
these plots, one can derive a map of required credibility �̂
for any given confidence level �̃, as the credibility that has
frequentist coverage �̃ (i.e. C(�̂) = �̃). In other words, �̂
is the �̃th quantile of C. From this map, one can construct
frequentist confidence regions with guaranteed exact cov-
erage: for a given observation x, one has to include in the
region the parameters ✓0 for which �(✓0,x) < �̂(✓0, �̃).
This procedure will be used to produce the calibrated
confidence regions of Fig. 1 (shaded areas).

III. RESULTS AND DISCUSSION

In the left panels of Fig. 1, we show results for the
GW150914 ringdown (starting from the peak of the am-
plitude). Shaded areas represent the 68% and 95% cali-
brated (i.e. guaranteed-coverage) credible regions for the
mass and spin (upper plot) and for the amplitude of the
fundamental mode and first overtone (lower plot). All
the other parameters are marginalized on. The solid lines
delimit the 68% and 95% credible regions from the ap-
proximate posterior obtained from the networks before
calibration, while the dot dashed lines show the same
credible regions inferred with a likelihood-based Bayesian
analysis, i.e. with pyRing [50], the o�cial ringdown
analysis tool of the LVK collaboration. Uncalibrated
marginal distributions for the full six-dimensional pos-
teriors are shown in Appendix C. The blue thick cross
in the upper plot shows the median values (with 90%
credible intervals represented by the arm-lengths) of the
remnant mass and spin as estimated by the LVK col-
laboration from the full inspiral-merger-ringdown signal,
using two precessing waveform models (EOBNR and IM-
RPhenom) and averaging the corresponding posteriors
with equal weights [51]. All results are for a joint analy-
sis of the LIGO Hanford and LIGO Livingstone data (see
Appendix A for details).

In the right panels, we show the maps of the required
credibility for 68% exact coverage resulting from the
amortized approximate posteriors. At each discrete pa-
rameter value (at the center of each pixel shown), we fix
all other parameters to the most probable values obtained
from the approximate posteriors of the uncalibrated net-
work for the GW150914 ringdown (given in Appendix C).
We simulate the signal and 103 realizations of the LIGO
noise at each pixel. For each time series (signal plus
noise) simulated in this way, we then derive the amor-
tized approximate posterior and use it to compute the
frequentist probability required to cover the injection’s
true mass and spin (top) or amplitudes (bottom) at 68%
and 95% confidence level. The required credibility for
68% coverage is shown by the color code. For instance,
a color code corresponding to say 80% (50%) means that
for an injection with parameters in that pixel, the nomi-
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against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
larizations1. The latter can be decomposed as h+�ih⇥ =P
`m h`m(t)�2Y`m(◆,�), where �2Y`m(◆,�) are the spin

weighted spherical harmonics, which depend on the di-
rection angles (◆,�) of the source relative to the detector.
In the ringdown, each multipole component can be ex-
pressed as a linear combination of QNMs as

h`m(t) =
1X

n=0

A`mne
i�`mn�(i!`mn+⌧

�1
`mn)(t�t0) , (1)

where we have neglected the mixing between modes with
the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤

`�m. The integer n labels the fundamen-
tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].

B. Simulation-based inference

SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of

Q
n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
PN

n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:

p(✓|x) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (2)

The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
larizations1. The latter can be decomposed as h+�ih⇥ =P
`m h`m(t)�2Y`m(◆,�), where �2Y`m(◆,�) are the spin

weighted spherical harmonics, which depend on the di-
rection angles (◆,�) of the source relative to the detector.
In the ringdown, each multipole component can be ex-
pressed as a linear combination of QNMs as

h`m(t) =
1X

n=0

A`mne
i�`mn�(i!`mn+⌧

�1
`mn)(t�t0) , (1)

where we have neglected the mixing between modes with
the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤

`�m. The integer n labels the fundamen-
tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].

B. Simulation-based inference

SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of

Q
n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
PN

n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:

p(✓|x) = q
�
f�1(✓)

� ����det
✓
@f�1

@✓

◆���� . (2)

The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
larizations1. The latter can be decomposed as h+�ih⇥ =P
`m h`m(t)�2Y`m(◆,�), where �2Y`m(◆,�) are the spin

weighted spherical harmonics, which depend on the di-
rection angles (◆,�) of the source relative to the detector.
In the ringdown, each multipole component can be ex-
pressed as a linear combination of QNMs as

h`m(t) =
1X

n=0

A`mne
i�`mn�(i!`mn+⌧

�1
`mn)(t�t0) , (1)

where we have neglected the mixing between modes with
the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤

`�m. The integer n labels the fundamen-
tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].

B. Simulation-based inference

SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of
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n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
PN

n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:
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The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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against simulations and which we apply to get neu-
ral posterior estimates for the controversial case of the
GW150914 ringdown. Unlike previous SBI implementa-
tions in GW physics, we also calibrate our posteriors by
checking their coverage against injected simulations (i.e.
we check the frequentist probability that the posteriors
include the injected parameter values). The resulting cal-
ibrated pipeline therefore produces posteriors with guar-
anteed confidence regions. When applied to GW150914,
our calibrated posteriors show only mild evidence of the
first overtone of the ` = m = 2 mode, with zero am-
plitude for the latter falling within the 95% confidence
region of the (marginalized) posteriors.

II. METHOD

A. The model

The detector response to a GW is given by h(t) =
F+h+ + F⇥h⇥, where F+,⇥(↵, �, ) are the antenna pat-
tern functions (with ↵, �, the right ascension, declina-
tion and polarization angles) and h+,⇥ the two GW po-
larizations1. The latter can be decomposed as h+�ih⇥ =P
`m h`m(t)�2Y`m(◆,�), where �2Y`m(◆,�) are the spin

weighted spherical harmonics, which depend on the di-
rection angles (◆,�) of the source relative to the detector.
In the ringdown, each multipole component can be ex-
pressed as a linear combination of QNMs as

h`m(t) =
1X

n=0

A`mne
i�`mn�(i!`mn+⌧

�1
`mn)(t�t0) , (1)

where we have neglected the mixing between modes with
the same m but di↵erent `, and we have assumed that all
modes start at the same time t0, which we fix to the peak
of the amplitude of the inspiral-merger-ringdown signal.
We also assume progenitor spins aligned with the binary
orbital angular momentum, and therefore the waveforms
satisfy h`m = h⇤

`�m. The integer n labels the fundamen-
tal mode (n = 0) and its overtones (n = 1, 2, . . . ), in
order of decreasing damping times. The QNM frequen-
cies !`mn and damping times ⌧`mn are functions of the
remnant mass Mf and dimensionless spin �f only, and
can be computed using perturbation theory [3]; we em-
ploy here the tabulated values given in Ref. [34]. The
amplitudes A`mn and phases �`mn, describing how each
mode is excited during the merger, cannot be computed
in perturbation theory, and instead need to be estimated
from the data. Following [13, 15], in our analysis we
consider only the fundamental mode (n = 0) and the
first overtone (n = 1) of the dominant ` = m = 2
harmonic, since other modes are expected to be sub-
dominant [35, 36]. Our parameter set is thus given by
✓ = {Mf ,�f , A220,�220, A221,�221}.

1 In general, one would also have to include the detector transfer
function, but that is ⇡ 1 at the frequencies of GW150914 [33].

B. Simulation-based inference

SBI (cf. [37] for a recent review) is a modern approach
to Approximate Bayesian Computation that uses simu-
lations from a model to estimate an approximate likeli-
hood [38], likelihood-to-evidence ratios [39–42], or poste-
riors [43, 44].

1. Sequential Neural Posterior Estimation with Masked
Autoregressive Flows

Given a series of pairs {✓n,xn}, n = 1, . . . , N , where
{✓n} is a set of parameters drawn from the prior ⇡(✓)
and {xn} is the corresponding set of simulated data, we
wish to learn the posterior p(✓|x⇤), where x⇤ are the real
data. To this end, we train a neural network F , with
weights  , to learn the mapping between data x and the
parameters � describing a family of conditional densities
q�(✓|x) that act as parametric approximation to the pos-
terior. Ref. [43] shows that maximizing the probability
of
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n q�(✓n|xn) with respect to �, for N ! 1, leads

to q�(✓|x) / p(✓|x). This is achieved by minimizing the

cross-entropy loss L( ) = �
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n=1 log q�(xn, )(✓n).

For the density estimation, we rely on a type of normal-
izing flow that stacks a series of autoregressive models,
referred to as Masked Autoregressive Flow (MAF) [45].
Autoregressive models [46] decompose the joint poste-
rior density as a product of one-dimensional condition-
als as p(✓|x) =

Q
i q�i(✓i|✓1:i�1,x). Each conditional is

modeled as a parametric density whose parameters are
a function of a hidden state �i, which in turn is a func-
tion of the previous hidden state �i�1 and the current
input variable ✓i. MAF uses an autoregressive model
called Masked Autoencoder for Distribution Estimation
(MADE) [47], which enforces the autoregressive property
(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
matrices of a fully-connected autoencoder with suitably
constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).

Normalizing flows [48] transform a base density q(#)
(usually a standard Gaussian) into the target density
p(✓|x) via an invertible transformation ✓ = f(#) with
tractable Jacobian:

p(✓|x) = q
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The flow is usually obtained from composing multiple
such invertible transformations. In practice, MAF uses
MADE with Gaussian conditionals as the building layer
of the flow.
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(i.e. the ordering of the variables) with a single forward
pass, dropping out connections by multiplying the weight
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constructed binary masks. An autoregressive model can
be equivalently interpreted as a normalizing flow (see [45]
for details).
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FIG. 1. Remnant parameters inferred with di↵erent number
of overtones, using data starting at peak strain amplitude.
Contours represent 90%-credible regions on the remnant mass
(Mf ) and dimensionless spin magnitude (�f ), obtained from
the Bayesian analysis of GW150914. The inference model is
that of Eq. (1), with di↵erent number of overtones N : 0 (solid
blue), 1 (solid yellow), 2 (dashed purple). In all cases, the
analysis uses data starting at peak strain (�t0 = t0�tpeak = 0).
Amplitudes and phases are marginalized over. The black
contour is the 90%-credible region obtained from the full IMR
waveform, as described in the text. The intersection of the
dotted lines marks the peak of this distribution (Mf = 68.5M�,
�f = 0.69). The top and right panels show 1D posteriors for
Mf and �f respectively. The linear quasinormal mode models
with N > 0 provide measurements of the mass and spin
consistent with the full IMR waveform, in agreement with
general relativity.

numerical relativity to translate measured values of the
binary mass ratio q and component spins (~�1, ~�2) into
expected remnant parameters [50, 51]. We use posterior
samples on the binary parameters made available by the
LIGO and Virgo collaborations [22, 52], marginalizing
over unavailable component-spin angles.

We consider explicit deviations from the Kerr spectrum
by allowing the frequency and damping time of the first
overtone to di↵er from the no-hair values. Under this
modified N = 1 model, the overtone angular frequency

becomes !1 = 2⇡f (GR)
1 (1 + �f1), with �f1 a fractional

deviation away from the Kerr frequency f (GR)
1 for any

given Mf and �f . Similarly, the damping time is allowed

to vary by letting ⌧1 = ⌧ (GR)
1 (1 + �⌧1). Fixing �f1 =

�⌧1 = 0 recovers the regular N = 1 analysis. We may then
compute the relative likelihood of the no-hair hypothesis
by means of the Savage-Dickey density ratio [53].
Results. Fig. 1 shows the 90%-credible regions for the

FIG. 2. Measured quasinormal-mode amplitudes for a model
with the fundamental mode and two overtones (N = 2). The
purple colormap represents the joint posterior distribution
for the three amplitudes in the N = 2 model: A0, A1, A2,
as defined in Eq. (1). The solid curves enclose 90% of the
probability mass. A yellow curve in the A0–A1 plane, as well as
corresponding yellow dashed lines, represents the 90%-credible
measurement of the amplitudes assuming N = 1. Similarly,
blue dashed lines give the 90%-credible measurement of A0

assuming N = 0. All amplitudes are defined at t = tpeak,
where all fits here are carried out (�t0 = 0). Values have been
rescaled by a constant to correspond to the strain measured
by the LIGO Hanford detector. Assuming N = 1, the mean
of the A1 marginalized posterior lies 3.6 standard deviations
away from zero, i.e. A1 = 0 is disfavored at 3.6�. Assuming
N = 2, A1 = A2 = 0 is disfavored with 90% credibility.

remnant mass (abscissa) and spin magnitude (ordinate)
obtained by analyzing data starting at tpeak with di↵er-
ent numbers of overtones (N = 0, 1, 2) in the ringdown
template of Eq. (1). The quasinormal-mode amplitudes
and phases have been marginalized over. For comparison,
we also show the 90%-credible region inferred from the
full IMR signal, as explained above. If the remnant is
su�ciently well described as a perturbed Kerr black hole,
and if general relativity is correct, we expect the ringdown
and IMR measurements to agree. As expected, this is not
the case if we assume the ringdown is composed solely of
the longest-lived mode (N = 0), in which case we obtain
a biased estimate of the remnant properties. In contrast,
the ringdown and IMR measurements begin to agree with
the addition of one overtone (N = 1). This is expected
from previous work suggesting that, given the network
signal-to-noise ratio of GW150914 (⇠14 in the post-peak
region, for frequencies >154.7Hz), we should be able to
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FIG. 2. Measured quasinormal-mode amplitudes for a model
with the fundamental mode and two overtones (N = 2). The
purple colormap represents the joint posterior distribution
for the three amplitudes in the N = 2 model: A0, A1, A2,
as defined in Eq. (1). The solid curves enclose 90% of the
probability mass. A yellow curve in the A0–A1 plane, as well as
corresponding yellow dashed lines, represents the 90%-credible
measurement of the amplitudes assuming N = 1. Similarly,
blue dashed lines give the 90%-credible measurement of A0

assuming N = 0. All amplitudes are defined at t = tpeak,
where all fits here are carried out (�t0 = 0). Values have been
rescaled by a constant to correspond to the strain measured
by the LIGO Hanford detector. Assuming N = 1, the mean
of the A1 marginalized posterior lies 3.6 standard deviations
away from zero, i.e. A1 = 0 is disfavored at 3.6�. Assuming
N = 2, A1 = A2 = 0 is disfavored with 90% credibility.
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obtained by analyzing data starting at tpeak with di↵er-
ent numbers of overtones (N = 0, 1, 2) in the ringdown
template of Eq. (1). The quasinormal-mode amplitudes
and phases have been marginalized over. For comparison,
we also show the 90%-credible region inferred from the
full IMR signal, as explained above. If the remnant is
su�ciently well described as a perturbed Kerr black hole,
and if general relativity is correct, we expect the ringdown
and IMR measurements to agree. As expected, this is not
the case if we assume the ringdown is composed solely of
the longest-lived mode (N = 0), in which case we obtain
a biased estimate of the remnant properties. In contrast,
the ringdown and IMR measurements begin to agree with
the addition of one overtone (N = 1). This is expected
from previous work suggesting that, given the network
signal-to-noise ratio of GW150914 (⇠14 in the post-peak
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FIG. 1. Mass and spin of the remnant BH for GW150914. Each panel corresponds to a di�erent value of �tH1

start = tH1

start ≠ t̄ H1

peak,
quoted in units of M . All �tH1

start values used in panels with dark (light) gold backgrounds are consistent with the median of the
tH1

peak distribution at 1‡ (2‡). In each panel, dashed black, solid red, and solid blue contours correspond to 90% credible level in
the BH parameters measured using the full IMR [28], Kerr221, and Kerr220 models, respectively.

n = 0 and n = 1 (henceforth Kerr221) relative to the
model including only n = 0 (henceforth Kerr220).

In this paper we ask whether overtone detection claims
in GW150914 data are robust. We use geometrical units
G = c = 1, restoring physical units when needed, and
we always quote redshifted BH masses as measured in a
geocentric reference frame.
Methods. The ¸ = |m| = 2 multipole is largely dominant
in GW150914 [17, 55], so we can ignore higher multipoles
and mode-mixing contributions in the general waveform
model (1). The system does not show evidence for an-
tialigned progenitor spins (and more generally, for any
non-zero spin), so counterrotating modes can be safely
ignored [17, 56]. We make several assumptions to match
as closely as possible the analysis of Ref. [54]. First, we
include only one or two QNMs (n = 0, 1) and assume
that all overtones start at the same time tstart

¸mn = tstart.
We fix (ÿ, „) = (fi, 0) rad, since in our model these pa-
rameters are strongly degenerate with the free overtone
amplitudes and phases, respectively. Since there is no
evidence for misaligned spins in GW150914, we also as-
sume that the waveform amplitudes satisfy h¸m = hú

¸≠m,
a good approximation when the progenitor spins are
nearly aligned with the orbital angular momentum of
the binary. The strain measured by GW detectors is
hD(t) = F+h+ + F◊h◊, where the detector pattern func-
tions F+,◊(–, ”, Â) depend on the right ascension, decli-
nation and polarization angles –, ” and Â [57]. Following
Ref. [54] we set (–, ”, Â) = (1.95, ≠1.27, 0.82) rad. We fix
tH1

start
in the Hanford detector and compute the starting

time in the Livingston detector using a fixed time de-
lay determined from the sky position parameters listed
above. We assume flat priors on all free parameters
in the ranges Mf œ [20, 200] M§, af œ [0, 0.99], A22n œ

[0, 5 ◊ 10≠20], „22n œ [0, 2fi].
We analyze the ringdown signal using the Bayesian

parameter estimation package pyRing [55, 58], employed
by the LVK collaboration to perform ringdown-only tests
of GR. The pyRing package relies on the nested sampling
algorithm cpnest [59] (for additional details needed to
reproduce our analysis, see the Software section), that
allows us to compare alternative hypotheses by computing
their relative Bayes factors. We use 4096 live points and
4096 maximum Markov Chain (MC) steps, which typically
result in ≥ 20000 independent samples at the end of each
of our runs. We have tested the robustness of our results
to sampling configurations by repeating the runs close
to the peaktime using 10000 live points and MC steps,
together with four di�erent random seeds in the instan-
tiations of the nested sampling. All the obtained results
are consistently recovered under these changes of settings.
The autocorrelation function (ACF) of the background
noise was chosen to be as close as possible to the settings
of Ref. [54]. The ACF was computed using a stretch of
64s of data starting at 1126257417s of GPS time (see the
Software section for more details). We have verified that
ACFs estimated using di�erent data stretches close to
the event do not significantly impact our conclusions, in
agreement with the hypothesis of wide-sense stationarity
of the noise. The data are appropriately cropped to avoid
contamination from earlier stages of the coalescence [60],
beginning from the starting time of the analysis and up
to a duration of 0.1 s. We analyze publicly available data
from GWOSC [61] with a sampling rate of 16384 Hz (the
maximum resolution available). This rate, larger than the
rate of 2048 Hz used in Ref. [54], was chosen to minimize
the impact of the time discretization. Repeating the anal-
ysis using a rate of 4096 Hz left our conclusions unaltered.
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FIG. 2. Top: Log-Bayes factor
!
log

10
B221

220

"
between the Kerr221 and Kerr220 hypotheses as a function of �tH1

start = tH1

start ≠ t̄ H1

peak.
For the GW150914 signal (red crosses), t̄ H1

peak is the median of the posterior distribution from the full IMR analysis; dark (light)
gold bands correspond to the 1‡ (2‡) uncertainties on the median. For the GW150914-like injections (black), tH1

peak is computed
from the simulation, and so it is known exactly. Black dots correspond to a GW150914-like injection in zero noise. The blue
dots (and related “error bars”) are computed by repeating the analysis at each tH1

start under di�erent realizations of the real
detector noise close to the GW150914 trigger. Bottom: Amplitude of the overtone A1 measured for di�erent tH1

start. The red
(black) curves correspond to the measurement obtained from the GW150914 signal (GW150914-like injection in zero noise). The
blue curves are the overtone amplitudes measured on the GW150914-like injection in real noise.

When investigating the consequences of slightly changing
the analysis settings, we found that the choice of tstart

(which has be set equal to tpeak according to the theoreti-
cal arguments in [43]) has by far the largest impact. The
e�ect of varying Â, ÿ is milder, and it will be discussed
in a forthcoming paper [62], together with the impact of
dropping the symmetry assumption on the amplitudes
h¸m. Ref. [54] assumed tH1

start
= tH1

peak
= 1126259462.423 s.

However the value of tH1

peak
must be estimated from the

data, and as such it is uncertain. Fixing it to a spe-
cific value can induce systematic biases. We quantify this
uncertainty by reconstructing tH1

peak
using the posterior dis-

tributions of the parameters of GW150914 [63] obtained
with the IMR waveform model SEOBNRv4 [64] (see the
Supplemental Material for details). We check that the
reconstruction is robust against waveform systematics by
using also the IMRPhenomPv2 waveform model [65–67].
In the Hanford detector, the resulting posterior distribu-
tion has median t̄ H1

peak
= 1126259462.42323 s and standard

deviation ‡ = 0.00059 s. We will vary tH1

start
within the

±2‡ interval of its posterior distribution.

Mass and spin estimates. In Fig. 1 we show the
mass and spin of the GW150914 BH remnant esti-
mated using the Kerr220 (blue), Kerr221 (red) and full
IMR model [28] (dashed black) for 10 selected values
of �tH1

start
© tH1

start
≠ t̄ H1

peak
. For �tH1

start
/M Ø ≠1.45,

the IMR posterior overlaps with both the Kerr220 and
Kerr221 models at 90 % credibility, although the Kerr221

reconstruction peaks closer to the IMR estimate. The
Kerr221 model agrees much better than Kerr220 with
the IMR posterior especially when we start fitting be-
fore the peak (�tH1

start
/M Æ ≠2.17), where such a fit is

not well motivated by the overtone model (see Fig. 1
of [43]). The starting time used in Ref. [54] corresponds
to �tH1

start
/M = ≠0.72 in Fig. 1. Note that the (Mf , af )

measurements obtained with the Kerr221 model overlap
with the GR prediction even when �tH1

start
/M = ≠3.62,

outside of the 2‡ confidence interval on the peak location.
This is likely due to a combination of two e�ects: (i) since
Ê221 < Ê220, any overtone model naturally includes a
low-frequency component, thus improving the fit to the
low-frequency, pre-merger part of the signal; and (ii) the
Kerr221 model has a larger number of parameters than
the Kerr220 model, thus at low signal-to-noise ratios it can
still fit the signal with the values of (Mf , af ) determined
by the late-time ringdown behavior.
Bayes factors. To quantify the evidence for the presence
of an overtone in GW150914, we compare the hypotheses
that the data can be described by the Kerr221 vs. Kerr220

models and compute the resulting Bayes factor, B221

220
. In

the top panel of Fig. 2 we show log
10

B221

220
(red crosses)

for selected valus of �tH1

start
. In the bottom panel we

show the posterior of the overtone amplitude A1 © A221

for the Kerr221 model (red curves). When �tH1

start
/M Ø

≠1.45, there is no evidence for the overtone in the data
(log

10
B221

220
< 0), and the posterior distributions in the

bottom panel have significant support for A1 = 0, hence
the Kerr220 model is favored with respect to Kerr221. We
observe significant Bayesian evidence for the presence
of the overtone (log

10
B221

220
> 2) only for �tH1

start
/M Æ

≠4.34, i.e., well outside of the nominal region of validity
of the Kerr221 model. For �tH1

start
/M = ≠0.72, which

corresponds to the tH1

peak
value used in Ref. [54], we find

that log
10

B221

220
= ≠0.60, while the amplitude has large

support for zero. At the peak time A1 is maximum
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FIG. 11. (Similar to Fig. 7) Model comparison at di↵erent
�t0 for GW150914. Top: Model evidence as a function of
�t0. The blue and red curves indicate the results for ap-
plying F220 (clean the fundamental mode only) and F22{0,1}
(clean the fundamental mode and the first overtone), respec-
tively. Middle: Bayes factor (K221) of the existence of the
first overtone over fundamental mode only (red curve). The
horizontal dashed and dash-dotted green lines indicate the
mean value and the standard deviation within the regime of
�t0 2 [15, 100]ms, respectively. The red Bayes factor curve
intersects the “1�+mean” line at a time of �t0 = 1.9 ms,
indicating the time when the first overtone becomes negligible
(vertical dashed line). Bottom: Distance (✏) of the MAP values
of Mf and �f to the values estimated from the whole IMR
signal.

and !221) ringdown template. The analysis is performed
with the Python package ringdown [31, 72]. The posterior
distributions of the amplitudes of the fundamental mode,
A0, and the first overtone, A1, are plotted as the blue
shaded regions in Figs. 12a and 12b. Meanwhile, we
compute what the values of A0 and A1 should be in
the injected signal by decomposing the NR waveform

(the l = m = 2 harmonic) into a superposition of the
fundamental mode and the first overtone with a least-
square fit. Here we include up to the first overtone for the
least-square fit, to be consistent with the templates used
in the MCMC analysis, even though Giesler et al. [46]
points out more overtones are needed to model ringdown
at such an early stage (�t0 = 1.5ms = 4.2Mf ). The lack
of higher overtones in the least-square fit leads to a bias
in the estimates of the mode amplitudes. Nevertheless, it
is a fair comparison between the MCMC results and the
“should-be” values (vertical dash-dotted lines in Figs. 12a
and 12b) obtained from the least-square fit. We find the
MCMC posteriors are consistent with the values indicated
by the vertical lines, A0 = 148 and A1 = 143. In fact, the
same feature has been pointed out by Finch and Moore
(see Fig. 7 and discussions in Sec. III B in [34]). We
provide more detailed discussions in Sec. IVA3.

TABLE I. Combinations of filters and fitting templates for
the mixed approach. We have two choices of the filter: F220

and F221, and two choices of the fitting template: two-QNM
(!220&!221) template, ignorant of mode cleaning, and one-
QNM template for the remaining mode.

Filter

Template
two-QNM one-QNM

F220 !220 &!221 !221

F221 !220 &!221 !220

We then use the mixed approach. There are four options
from the combinations of the two choices of the filters and
two choices of the fitting templates (see Table I). We can
choose to clean the fundamental mode (the first overtone)
by applying the filter F220 (F221). After the filtering, we
also have two choices of the ringdown template to fit the
data and run MCMC: we can (a) continue to use the
two-QNM model, assuming both modes exist in the data
and we have no knowledge of the mode cleaning (b) use
a single-mode template for the remaining QNM. We first
apply the filter F220, built from the true remnant mass
and spin, to remove the fundamental mode. Then we
use the two-QNM template to run MCMC against the
filtered data. The posteriors of A0 and A1 are plotted as
the green dashed curves in Figs. 12a and 12b, respectively.
After applying F220, it is expected that there is no !220

component left in the filtered data. Indeed, we see the
distribution of A0 is pushed close to 0, demonstrating that
the fundamental mode no longer exists in the data. By
contrast, the posterior distribution of A1 is only slightly
impacted by the filtering (compare the green dashed curve
to the blue-shaded region in Fig. 12b). We emphasize that,
as discussed in Sec. II A, the amplitude of the first overtone
is reduced by the filter F220 by a factor of B221

220 = 2.053
[Eq. (11)]. In Fig. 12b, the green dashed curve is obtained
by multiplying the original A1 distribution from MCMC
by a factor of B220

221 = 2.053, so that we can make a
fair comparison to the blue distribution. On the other
hand, we also fit the filtered data (!220 component is
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FIG. 11. (Similar to Fig. 7) Model comparison at di↵erent
�t0 for GW150914. Top: Model evidence as a function of
�t0. The blue and red curves indicate the results for ap-
plying F220 (clean the fundamental mode only) and F22{0,1}
(clean the fundamental mode and the first overtone), respec-
tively. Middle: Bayes factor (K221) of the existence of the
first overtone over fundamental mode only (red curve). The
horizontal dashed and dash-dotted green lines indicate the
mean value and the standard deviation within the regime of
�t0 2 [15, 100]ms, respectively. The red Bayes factor curve
intersects the “1�+mean” line at a time of �t0 = 1.9 ms,
indicating the time when the first overtone becomes negligible
(vertical dashed line). Bottom: Distance (✏) of the MAP values
of Mf and �f to the values estimated from the whole IMR
signal.

and !221) ringdown template. The analysis is performed
with the Python package ringdown [31, 72]. The posterior
distributions of the amplitudes of the fundamental mode,
A0, and the first overtone, A1, are plotted as the blue
shaded regions in Figs. 12a and 12b. Meanwhile, we
compute what the values of A0 and A1 should be in
the injected signal by decomposing the NR waveform

(the l = m = 2 harmonic) into a superposition of the
fundamental mode and the first overtone with a least-
square fit. Here we include up to the first overtone for the
least-square fit, to be consistent with the templates used
in the MCMC analysis, even though Giesler et al. [46]
points out more overtones are needed to model ringdown
at such an early stage (�t0 = 1.5ms = 4.2Mf ). The lack
of higher overtones in the least-square fit leads to a bias
in the estimates of the mode amplitudes. Nevertheless, it
is a fair comparison between the MCMC results and the
“should-be” values (vertical dash-dotted lines in Figs. 12a
and 12b) obtained from the least-square fit. We find the
MCMC posteriors are consistent with the values indicated
by the vertical lines, A0 = 148 and A1 = 143. In fact, the
same feature has been pointed out by Finch and Moore
(see Fig. 7 and discussions in Sec. III B in [34]). We
provide more detailed discussions in Sec. IVA3.

TABLE I. Combinations of filters and fitting templates for
the mixed approach. We have two choices of the filter: F220

and F221, and two choices of the fitting template: two-QNM
(!220&!221) template, ignorant of mode cleaning, and one-
QNM template for the remaining mode.

Filter

Template
two-QNM one-QNM

F220 !220 &!221 !221

F221 !220 &!221 !220

We then use the mixed approach. There are four options
from the combinations of the two choices of the filters and
two choices of the fitting templates (see Table I). We can
choose to clean the fundamental mode (the first overtone)
by applying the filter F220 (F221). After the filtering, we
also have two choices of the ringdown template to fit the
data and run MCMC: we can (a) continue to use the
two-QNM model, assuming both modes exist in the data
and we have no knowledge of the mode cleaning (b) use
a single-mode template for the remaining QNM. We first
apply the filter F220, built from the true remnant mass
and spin, to remove the fundamental mode. Then we
use the two-QNM template to run MCMC against the
filtered data. The posteriors of A0 and A1 are plotted as
the green dashed curves in Figs. 12a and 12b, respectively.
After applying F220, it is expected that there is no !220

component left in the filtered data. Indeed, we see the
distribution of A0 is pushed close to 0, demonstrating that
the fundamental mode no longer exists in the data. By
contrast, the posterior distribution of A1 is only slightly
impacted by the filtering (compare the green dashed curve
to the blue-shaded region in Fig. 12b). We emphasize that,
as discussed in Sec. II A, the amplitude of the first overtone
is reduced by the filter F220 by a factor of B221

220 = 2.053
[Eq. (11)]. In Fig. 12b, the green dashed curve is obtained
by multiplying the original A1 distribution from MCMC
by a factor of B220

221 = 2.053, so that we can make a
fair comparison to the blue distribution. On the other
hand, we also fit the filtered data (!220 component is
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between all three sets of results. In particular, all three
sets of authors find that the overtone analyses (N = 1)
always gives results that are more consistent with the
IMR result and get increasingly broader for later choices
of the ringdown start time. All sets of authors also find
that for the fundamental-only analysis (N = 0) starting
at early times (i.e. t0 � tref . 0) leads to posteriors that
are inconsistent with the IMR result. However, there are
subtle di↵erences between the various results. Our re-
sults with N = 0 and early start times gives posteriors
biased to large values of Mf and �f ; this is also seen in
Ref. [28], but not in Ref. [27] (where the posterior con-
sistently reaches lower values of �f ). Our results with
N = 0 and late start times (i.e. t0 � tref & 4M̃f ) are par-
tially consistent with the IMR results; this is also seen in
Ref. [27], but not in Ref. [28] who never find consistency
with the IMR result for any choice of start time. Finally,
when including the overtone (N = 1) and starting at
late times, Ref. [27] find results that are consistent with
�f = 0 (i.e. a Schwarzschild BH) at 90% confidence, in
stark disagreement with Ref. [28] who find �f & 0.2. Our
results are in better agreement with those of Ref. [28].

In the middle panel of Fig. 3 we investigate our N = 1
overtone analysis further by plotting the one-dimensional
marginalized posteriors for the amplitude, A1, of the
QNM overtone. An amplitude posterior peaked away
from zero has been suggested (particularly by Ref. [9])
as one good indication for the presence of an overtone in
the data. As expected, the QNM overtone decays quickly
and when starting at later times we find a small value for
the amplitude. The degree to which the A1 posterior is
peaked away from zero can be quantified using the ratio
between the median and standard deviation; this is plot-
ted in the inset of the middle panel of Fig. 3. For values
of t̄0 between �2M̃f and +6M̃f , we find posteriors on
A1 that are peaked away from zero at between 1.44 and
3.34�. If we reweight using the IMRP tpeak prior, we find
a posterior peaked away from zero at 1.79�.

Our results in the middle panel of Fig. 3 can be com-
pared to the corresponding results of the time-domain
analyses shown in Fig. 1 of Ref. [28] and Fig. 2 of Ref. [27].
All three sets of authors find values of A1 that are smaller
at later times, consistent with the expected exponential
decay of the overtone, but they disagree on the abso-
lute value of the amplitude and the significance with
which a zero amplitude can be excluded. Refs. [9, 28]
find the largest values; they report a posterior peaked
3.6� away from zero. Ref. [27] finds much smaller values
which are consistent with zero for many choices of start
time. These analyses use essentially the same method
and should therefore agree exactly. Our result, produced
using a di↵erent method, lies somewhere in between; we
do find nonzero values are preferred for a range of start
times, but only with a modest significance of ⇠ 1.79� for
our preferred IMRP tpeak prior which we consider to be
the best description of our uncertainty on the ringdown
start time.

The comparison of our results with those of Refs. [9,

0 5 10 15 20 25 30
A1,ref [�1021]

D
en

si
ty

t̄0 = �2 M̃f

t̄0 = 0 M̃f

t̄0 = 2 M̃f

t̄0 = 4 M̃f

t̄0 = 6 M̃f

IMRP tpeak

reweighting

FIG. 4. Posteriors on the overtone amplitude from our N = 1
overtone analysis, rescaled to a fixed reference time of tref .
The rescaling does not significantly a↵ect the significance with
which the posteriors are peaked away from zero. The colors
and line styles indicate the prior used on t0 and correspond
to those used in Fig. 1.

27, 28] is complicated by the fact that we use subtly dif-
ferent definitions for the amplitude. The time-domain
analyses naturally define the mode amplitudes at a fixed
time, usually t0. Our frequency-domain analysis also de-
fines the mode amplitudes at t0, but this start time is
then varied as part of the analysis, blurring the exact
time at which the amplitude is defined. This is a fairly
small e↵ect for the narrow Gaussian priors, but more sig-
nificant for the wider IMRP tpeak prior. We can correct
for this e↵ect by rescaling all the overtone amplitudes
to any fixed reference time (here we use tref) using the
known decay rate for the QNMs;

A1,ref = A1 exp

✓
t0 � tref

⌧221(Mf ,�f )

◆
, (7)

where ⌧221(Mf ,�f ) is the exponential decay time of the
(2, 2, 1) QNM and is a function of the remnant mass and
spin. This rescaling can be done for any QNM and the re-
sulting amplitude parameters A`mn,ref are more directly
comparable with the amplitudes used in time-domain
analyses. Posteriors on A1,ref are shown in Fig. 4.

In the bottom panel of Fig. 3 we plot the Bayes’ fac-
tors between the fundamental only (N = 0) and over-
tone (N = 1) analyses. This is defined as B2QNM

1QNM
=

ZN=1/ZN=0. The Bayes’ factor has been suggested (par-
ticularly by Ref. [27]) as another good way for quantify-
ing the support for an overtone in the data. The Bayes’
factor was computed in two di↵erent ways. Firstly,
dynesty was used to calculate the evidences ZN=0 and
ZN=1 for both of the analyses described above, and these
were reweighted to the desired t0 prior using Eq. 6.
Nested sampling also returns an estimate for the error
on the evidences, and these are used to plot the error

Ma et al. (2023)
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•  waveforms x 50 noise realisations each


• 


• T=0.1 s, sample rate 4096Hz, 


• Uniform priors


• Learning rate , batches size 100, stop after 25 epochs of no loss decrees 


• Priors truncation scheme at , factor 2 condition 


• H1 (107+125) epochs, L1 (145) epochs


• ~10 minutes x epoch on NVIDIA A-100 GPU (total training time: 2 days)
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ℓ = m = 2 , n = 0, 1

5 ⋅ 10−4

4σ
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in the most favorable scenario for detecting the first over-
tone [21]), we conclude that our guaranteed-coverage re-
sults yield only mild evidence (⇠ 2�) for the ` = m = 2,
n = 1 mode in the data. Our findings therefore cast
doubts on the usefulness of GW150914 to test the no-hair
theorem of General Relativity, although such tests will
definitely become feasible with next generation (ground-
and space-based) detectors [11].

Our results can be extended in several directions. As
mentioned, SBI techniques only require forward simula-
tions, and can therefore account for non-Gaussian/non-
stationary noise features provided that those can be sim-
ulated (or sampled from chunks of data where no signal
is present), thus improving the realism of the detector de-
scription. A powerful alternative to the flow-based neural
posterior estimation used here is neural ratio estimation,
which could be used to distinguish between a model with
and without a first overtone. Finally, population-level
inference for black hole binaries is another target ripe for
exploration with SBI techniques, given the requirement
to model the complex selection function of the detectors.
We believe that SBI will play a prominent role in scien-
tific exploitation of future GW data.

ACKNOWLEDGMENTS

We thank Gregorio Carullo, Roberto Cotesta, Vasco Gen-
nari andWalter Del Pozzo for helpful discussions and cor-
respondence about the pyRing package, and Costantino
Pacilio, Konstantin Karchev, Christoph Weniger for use-
ful discussions. MC and EB acknowledge support from
the European Union’s H2020 ERC Consolidator Grant
“GRavity from Astrophysical to Microscopic Scales”
(Grant No. GRAMS-815673) and the EU Horizon 2020
Research and Innovation Programme under the Marie
Sklodowska-Curie Grant Agreement No. 101007855. RT
acknowledge co-funding from Next Generation EU, in the
context of the National Recovery and Resilience Plan,
Investment PE1 – Project FAIR “Future Artificial Intel-
ligence Research”. This resource was co-financed by the
Next Generation EU [DM 1555 del 11.10.22]. RT is par-
tially supported by the Fondazione ICSC, Spoke 3 “As-
trophysics and Cosmos Observations”, Piano Nazionale
di Ripresa e Resilienza Project ID CN00000013 ”Italian
Research Center on High-Performance Computing, Big
Data and Quantum Computing” funded by MUR Mis-
sione 4 Componente 2 Investimento 1.4: Potenziamento
strutture di ricerca e creazione di “campioni nazionali di
R&S (M4C2-19 )” - Next Generation EU (NGEU).

Appendix A: Technical Details

We use a sample rate of 4096 Hz and analyse 0.1 sec-
onds of LIGO data for the GW150914 ringdown event.
We take as starting time at the LIGO Hanford detector
t0 = tpeak = 1126259462.42323 GPS, as estimated in [15],

and compute the time of arrival in LIGO Livingston with
the LALSuite library [52]. The antenna pattern functions
are also provided by the LALSuite library [52], and we fix
the sky position of the source as assumed in [13], namely
↵ = 1.95 rad, � = �1.27 rad,  = 0.82 rad and incli-
nation ◆ = ⇡ rad, � = 0. We assume uniform priors
on all parameters with Mf 2 [50, 100]M�, �f 2 [0, 1],
A22n 2 [0, 5] · 10�20 and �22n 2 [0, 2⇡].

We perform our analysis in the frequency domain and
apply a band-pass filter between 100 and 650 Hz. This
reduced range of frequencies covers completely the ring-
down signal for masses and spins in our prior space, and
allows us to avoid any data compression. To produce the
training set coherently with the data that we analyze,
we first generate the strain data in the time domain, and
then we transform to the frequency domain. We gener-
ate random noise realizations from the PSDs provided
by the LVK collaboration for 32 seconds of LIGO Han-
ford/Livingston data around GW150914 [53]2, and we
inject signals using the model given in Sec. IIA. After
cutting the data 0.1s after the starting time, we apply
a Tukey window function with ↵ = 1/70 and perform a
Real Fast Fourier Transform (RFFT) followed by whiten-
ing. Finally, we concatenate the real and imaginary parts
of the RFFT to produce our 112 bin long dataset. The
very sharp window function that we use introduces con-
tamination in the form of spectral leakage. However,
since this happens coherently in the training set and in
the observable, in our case this does not represent an is-
sue. In other words, one can think of the RFFT as a
linear transformation of the data consistently applied to
both simulations and data.

We train one neural network for each of the two LIGO
detectors, and we perform the inference separately in
each one. We then combine the posteriors by rejec-
tion sampling. To speed up the production of the re-
quired credibility maps as described in Sec. II B 3, we also
combine the two posteriors doing importance sampling
through weighted Kernel Density Estimation (KDE).
Namely, we perform KDE on the samples from the LIGO
Hanford analysis and weigh them with the posterior
probability obtained from the LIGO Livingston analy-
sis. We have checked this procedure to be equivalent
to rejection sampling and sensibly faster. We validate
the posteriors at fixed parameter values with P-P plots
on two-dimensional grids of 2500 points each, across the
final truncated prior, using 1000 simulations per point.
The resulting maps for 68% coverage are given in the
right panels of Fig. 1.

2 An alternative, which results very useful when a reliable PSD
is not available due to non-Gaussianity and/or non-stationarity
in the data, is to use chunks of real noise taken from the data
around the event.
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in the most favorable scenario for detecting the first over-
tone [21]), we conclude that our guaranteed-coverage re-
sults yield only mild evidence (⇠ 2�) for the ` = m = 2,
n = 1 mode in the data. Our findings therefore cast
doubts on the usefulness of GW150914 to test the no-hair
theorem of General Relativity, although such tests will
definitely become feasible with next generation (ground-
and space-based) detectors [11].

Our results can be extended in several directions. As
mentioned, SBI techniques only require forward simula-
tions, and can therefore account for non-Gaussian/non-
stationary noise features provided that those can be sim-
ulated (or sampled from chunks of data where no signal
is present), thus improving the realism of the detector de-
scription. A powerful alternative to the flow-based neural
posterior estimation used here is neural ratio estimation,
which could be used to distinguish between a model with
and without a first overtone. Finally, population-level
inference for black hole binaries is another target ripe for
exploration with SBI techniques, given the requirement
to model the complex selection function of the detectors.
We believe that SBI will play a prominent role in scien-
tific exploitation of future GW data.
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FIG. 2. 68% and 95% marginal posteriors for the GW150914 ringdown analysis, from the uncalibrated simulation-based analysis
(solid/black) and the likelihood-based analysis (red/dashed).
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FIG. 1. Results for the GW150914 ringdown analysis. Left panels: marginal posterior 68%, 95% regions from the uncalibrated
simulation-based analysis (solid/black) and calibrated regions with guaranteed exact coverage (68% orange, 95% yellow) for
mass and spin (top panel) and QNM amplitudes (bottom panel). The red/dot-dashed contours are from a likelihood-based
analysis. Right panels: maps of required credibility (for 68% guaranteed coverage) used to obtain the calibrated regions on the
left. The black contours are as in the left panel, for reference.

nal 80% (50%) confidence regions computed from the ap-
proximate posteriors actually contain the true parameter
values 68% of the times, i.e. the nominal confidence re-
gions produced by the uncalibrated network are too small
(large), signaling under-covering (conservative) posteri-
ors.

Even though our approximate posterior exhibits over-
and under-coverage in some regions (for 68% confidence),
this is actually the result of rather small inaccuracies in
the size of the inferred posterior. Indeed, as can be seen,
the calibrated 68% contours only slightly depart from the
approximate ones. For mass and spin, this is also true
for the 95% contour. As for the amplitudes, the approx-
imate posterior distribution tends to be under-covering
(for 95% coverage) for higher values of A221, which re-
sults in a more sizeable enlargement of the 2� contour in
that direction.

We stress again that this coverage calibration proce-

dure is enabled by the locally amortized nature of our
SBI technique — being computationally unfeasible with
traditional Bayesian methods. Fig. 1 requires 5⇥106 full
simulated inferences (each taking less than a second with
our trained network), which would require ⇠ 5⇥1011 like-
lihood evaluation with pyRing. Most importantly, the
calibration procedure leads to regions with guaranteed
coverage. The procedure, in general, tends to enlarge
the contours in the under-covered regions (left panels of
Fig. 1). This can intuitively be understood because the
network is overly confident in the under-covered region
(therefore resulting in artificially small contours).

Interestingly, while our approximate posteriors seem to
provide some support for the presence of the first over-
tone in the data (excluding A221 = 0 at 95% level), after
calibration A221 = 0 lies within the 95% credibility re-
gion. Since in this analysis we considered the GW150914
data starting at the amplitude peak (i.e. we put ourselves

2500 pixels (P-P plot)

x


1000 inferences each
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Conclusions
• Fast inference allows frequentist validation and calibration of posteriors


• Extremely important for low SNR (~ 9) GW events


• Applied to ringdown of GW150914


• Calibration has an impact on the physical results, lowering the evidence of the first overtone


• Future extensions:


• non-Gaussian/non-stationary noise


• More complex waveforms [e.g. higher harmonics (GW190521), non-linear QNMs] 


• Tests of gravity


• LISA / ET (higher SNR) Thank you!


