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Quantum space-time and symmetries

* Theoretical investigations in quantum gravity suggest that space-time itself
should acquire «quantum features»

* Relativistic transformations also acquire quantum features, in order for the
guantum space-time properties to be valid for every observer

e Observers are connected by quantum group transformations

* As a case study, we will consider the SU,, (2) quantum group, to investigate
purely rotated systems.



SU(2) coordinatization and Euler Angles

* In classical and quantum mechanics, rotation transformations are governed by
the group SU(2)

SU(2)9U=(C a) I G2t =1

a = eX sin Q c = e'? cos Q
2 2

 SU(2) parameters and Euler Angles
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* qisa«small» deformation parameter, larger than 0 and close to 1.

e7mpotent states on coquantum on Uq(2)Uq(2), Suq(2)SUq(2), and s0q(3) - Uwe Franz Adam Skalski and Reiji Tomatsu - Journal of Noncommutative Geometry



Homomorphism between SU,(2) and SO,(3)

Cq (50(3)) = C,(SU(2)/Z,), realizing the g-analogue of the SU(2) to SO(3)
homomorphism

* A 3x3 matrix representation is given by

%(az —qc? + (a)? —q(c")?) %(—a2 + gc? + (a*)* — q(c)?) %(1 + g%)(a*c + c*a)

[ 1 [
E(az R = (Rl E(az e (a’ ) + q(c)?) —5(1 +q%) (a’c —c’a)
—(ac + c*a*) i(ac — c*a*) 1—(1+4+g%)cc*

* This is not a real valued matrix anymore, it contains operators

. Podles, “Symmetries of quantum spaces. subgroups and quotient spaces of quantumsu (2) andso
(3) groups,” Communications in Mathematical Physics, vol. 170, no. 1, pp. 1-20, 1995
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l1r(a)6, €) = e /(1 - q2")|n ' 1,6, s. -ﬁ(a*)ln, 5 i e‘ie\/(l —@*" ) n+1,6,e%4,

. ﬁ(cjln, d,€) = ei‘sq"In,S', e); n(c*)In, b ,€) = e 9q"|n,§,€); 4.

N

« a = e cos (g) G =68 #sIn (g) (Classical case)



Quantum Euler Angles (1)

 We promote the SU(2)-Euler Angles relations to the quantum case.

 Comparing the phases of a and c to their classical analogues, we identify

e with y and § with ¢. They are continuous and play the same role as
before.

* Exploiting the fact that c is a diagonal operator

g" = Sin <%Tl)> < 0(n) = 2Arcin(q™)



Quantum Euler Angles (2)

O(n) = 2Arcin(q™)
q=0.99




Physical interpretation and Quantum rotations

« Astate |ip) € H is representative of the relative orientation between two
reference frames, A and B.

* Our interpretation is that the mean value of R, on ) will give an estimate of the
entries of the rotation matrix that connects A and B

(WIRgY);;

 However, due to non-commutatitvity, we will have a non vanishing variance for the
matrix elements, in general:

Ay = JWIREIY — IRl



Examples of Quantum rotations

* Basis states in representation p have A;; = 0 and the mean value of R, on such
states gives sharp rotations around the z-axis.

* Superpositions of basis states in representation 7 yield non-zero values of A;;
and the mean value of R, gives rise to deformed rotation matrices, which

reduce to standard rotation matrices about an axis in the x — y plane in the
commutative limit



Same stars, different skies

* Fuzziness of space-time points depends on the choices made by the observer.
In this sense, the reconstructed space-time is agency-dependent.
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Example: rotation around the z-axis

* Consider a state |y) in representation p. The mean value of the rotation matrix
IS:

cos(2y) —sin(2y) O
(XIRqlx)y = sin(2xy)  cos(2y) O
0 0 1

* It coincides with a standard SO (3) rotation matrix. Indeed, computing the
uncertainties, we have

A;j = 0 — Sharp rotations around the z-axis



«Physical» states construction

* To effectively describe rotations’ deformations, we demand that our states of
geometry |Y) satisfy

(1/)|Rq|1/)>ij — (Rij) A;jj =0 whenqg — 1

where (Rl-j) are the entries of a classical rotation matrix.

* Since (¢, x) behave as in the classical case, we must look for states of the
form

¥)= ) ealn 6,2)
n=0

heavily weighted around nn and which satisfy the criteria above,
to properly describe a rotation deformation of Euler angles (¢, x, 8(i1))



Example: rotation of T around the x-axis

* Consider the state |Y) = |n; x; @) = ‘O;%; 0>. The relevant quantities,
working at first order in (1 — q)

1-(1-gq) 0 0
(¥[Rq[) = 0 i =[Oy 0 +0o(1 - q)
0 0 S 2 (1. ")

V2(1-q) v2(1-q) 2(1-9q)
(|ARg|w) = | V2(1—q) V2(1-¢q) J2(1—¢q) |+0o(1—-q)
J21—q) 2(1-q) 0

* As g — 1, these correctly reproduce a rotation of r around the x-axis with
null uncertainty.
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