Quantum Euler angles and agency-dependent space-time

Giuseppe Fabiano – University of Naples «Federico II»

In collaboration with:

G. Amelino-Camelia, V. D'Esposito, D. Frattulillo, P. Hoehn, F.

Mercati

XXV SIGRAV Conference on General Relativity and Gravitation

arXiv: 2211.11347

Quantum space-time and symmetries

- Theoretical investigations in quantum gravity suggest that space-time itself should acquire «quantum features»
- Relativistic transformations also acquire quantum features, in order for the quantum space-time properties to be valid for every observer
- Observers are connected by quantum group transformations
- As a case study, we will consider the $SU_q(2)$ quantum group, to investigate purely rotated systems.

SU(2) coordinatization and Euler Angles

 In classical and quantum mechanics, rotation transformations are governed by the group SU(2)

$$SU(2) \ni U = \begin{pmatrix} a & -c^* \\ c & a^* \end{pmatrix} \quad a, c \in \mathbb{C} : |a|^2 + |c|^2 = 1$$
$$a = e^{i\chi} \sin\left(\frac{\theta}{2}\right) \quad c = e^{i\phi} \cos\left(\frac{\theta}{2}\right)$$

SU(2) parameters and Euler Angles

$$\begin{cases} \theta = \beta \\ \chi = \frac{\alpha + \gamma}{2} \\ \phi = \frac{\pi}{2} - \frac{\alpha - \gamma}{2} \end{cases}$$

Link between SU(2) and SO(3)

• The connection between SU(2) and classical rotations is established via the canonical homomorphism with SO(3).

$$R = \begin{pmatrix} \frac{1}{2}(a^2 - c^2 + (a^*)^2 - (c^*)^2) & \frac{i}{2}(-a^2 + c^2 + (a^*)^2 - (c^*)^2) & a^*c + c^*a \\ \frac{i}{2}(a^2 + c^2 - (a^*)^2 - (c^*)^2) & \frac{1}{2}(a^2 + c^2 + (a^*)^2 + (c^*)^2) & -i(a^*c - c^*a) \\ -(ac + c^*a^*) & i(ac - c^*a^*) & 1 - 2cc^* \end{pmatrix}$$

$SU_q(2)$

• Parameters become the generators of $C_q ig(SU(2) ig)$, the algebra of complex functions on SU(2)

$$\begin{pmatrix} a & -c^* \\ c & a^* \end{pmatrix} \Rightarrow \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix} \qquad a, c \in C_q(SU(2))$$

endowed with a non-commutative product realized by

$$ac = qca$$
 $ac^* = qc^*a$ $cc^* = c^*c$

$$c^*c + a^*a = 1$$
 $aa^* - a^*a = (1 - q^2)c^*c$

• q is a «small» deformation parameter, larger than 0 and close to 1.

Homomorphism between $SU_q(2)$ and $SO_q(3)$

- $C_q(SO(3)) \coloneqq C_q(SU(2)/Z_2)$, realizing the q-analogue of the SU(2) to SO(3) homomorphism
- A 3x3 matrix representation is given by

$$R_{q} = \begin{pmatrix} \frac{1}{2}(a^{2} - qc^{2} + (a^{*})^{2} - q(c^{*})^{2}) & \frac{i}{2}(-a^{2} + qc^{2} + (a^{*})^{2} - q(c^{*})^{2}) & \frac{1}{2}(1 + q^{2})(a^{*}c + c^{*}a) \\ \frac{i}{2}(a^{2} + qc^{2} - (a^{*})^{2} - q(c^{*})^{2}) & \frac{1}{2}(a^{2} + qc^{2} + (a^{*})^{2} + q(c^{*})^{2}) & -\frac{i}{2}(1 + q^{2})(a^{*}c - c^{*}a) \\ -(ac + c^{*}a^{*}) & i(ac - c^{*}a^{*}) & 1 - (1 + q^{2})cc^{*} \end{pmatrix}$$

• This is not a real valued matrix anymore, it contains operators

$SU_q(2)$ representations

• The Hilbert space containing the two unique irreducible representations of the $SU_q(2)$ algebra is $H=H_\pi \oplus H_\rho$, where $H_\pi=L^2(S^1) \otimes L^2(S^1) \otimes \ell$ and $H_\rho=L^2(S^1)$

•
$$\rho(a)|\eta\rangle = e^{i\eta}|\eta\rangle;$$
 $\rho(a^*)|\eta\rangle = e^{-i\eta}|\eta\rangle;$ $\rho(c)|\eta\rangle = 0;$ $\rho(c^*)|\eta\rangle = 0;$

•
$$\pi(a)|n,\delta$$
, $\epsilon\rangle=e^{i\epsilon}\sqrt{(1-q^{2n})}|n-1,\delta$, $\epsilon\rangle$; $\pi(a^*)|n,\delta$, $\epsilon\rangle=e^{-i\epsilon}\sqrt{(1-q^{2n+2})}|n+1,\delta$, $\epsilon\rangle$;

•
$$\pi(c)|n,\delta$$
, $\epsilon\rangle = e^{i\delta}q^n|n,\delta$, $\epsilon\rangle$;
$$\pi(c^*)|n,\delta$$
, $\epsilon\rangle = e^{-i\delta}q^n|n,\delta$, $\epsilon\rangle$;

•
$$a = e^{i\chi} \cos\left(\frac{\theta}{2}\right)$$
 $c = e^{i\phi} \sin\left(\frac{\theta}{2}\right)$ (Classical case)

Quantum Euler Angles (1)

- We promote the SU(2)-Euler Angles relations to the quantum case.
- Comparing the phases of α and c to their classical analogues, we identify ϵ with χ and δ with ϕ . They are continuous and play the same role as before.
- Exploiting the fact that c is a diagonal operator

$$q^n = Sin\left(\frac{\theta(n)}{2}\right) \leftrightarrow \theta(n) = 2Arcin(q^n)$$

Quantum Euler Angles (2)

$$\theta(n) = 2Arcin(q^n)$$
q=0.99

Physical interpretation and Quantum rotations

- A state $|\psi\rangle \in H$ is representative of the relative orientation between two reference frames, A and B.
- Our interpretation is that the mean value of R_q on $|\psi\rangle$ will give an estimate of the entries of the rotation matrix that connects A and B

$$\langle \psi | R_q | \psi \rangle_{ij}$$

 However, due to non-commutatitvity, we will have a non vanishing variance for the matrix elements, in general:

$$\Delta_{ij} = \sqrt{\langle \psi | R_q^2 | \psi \rangle_{ij} - \langle \psi | R_q | \psi \rangle_{ij}^2}$$

Examples of Quantum rotations

• Basis states in representation ρ have $\Delta_{ij}=0$ and the mean value of R_q on such states gives sharp rotations around the z-axis.

• Superpositions of basis states in representation π yield non-zero values of Δ_{ij} and the mean value of R_q gives rise to deformed rotation matrices, which reduce to standard rotation matrices about an axis in the x-y plane in the commutative limit

Same stars, different skies

• Fuzziness of space-time points depends on the choices made by the observer. In this sense, the reconstructed space-time is agency-dependent.

Example: rotation around the z-axis

• Consider a state $|\chi\rangle$ in representation ρ . The mean value of the rotation matrix is:

$$\langle \chi | R_q | \chi \rangle_{ij} = \begin{pmatrix} \cos(2\chi) & -\sin(2\chi) & 0 \\ \sin(2\chi) & \cos(2\chi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• It coincides with a standard SO(3) rotation matrix. Indeed, computing the uncertainties, we have

 $\Delta_{ij} = 0 \rightarrow \text{Sharp rotations around the z-axis}$

«Physical» states construction

• To effectively describe rotations' deformations, we demand that our states of geometry $|\psi\rangle$ satisfy

$$\langle \psi | R_q | \psi \rangle_{ij} \rightarrow (R_{ij})$$
 $\Delta_{ij} \rightarrow 0$ when $q \rightarrow 1$

where (R_{ij}) are the entries of a classical rotation matrix.

• Since (ϕ, χ) behave as in the classical case, we must look for states of the form

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |n, \phi, \chi\rangle$$

heavily weighted around \bar{n} and which satisfy the criteria above, to properly describe a rotation deformation of Euler angles $(\phi, \chi, \theta(\bar{n}))$

Example: rotation of π around the x-axis

• Consider the state $|\psi\rangle=|n;\chi;\phi\rangle=\left|0;\frac{\pi}{2};0\right\rangle$. The relevant quantities, working at first order in (1-q)

$$\langle \psi | R_q | \psi \rangle = \begin{pmatrix} 1 - (1 - q) & 0 & 0 \\ 0 & -1 + (1 - q) & 0 \\ 0 & 0 & -1 + 2(1 - q) \end{pmatrix} + o(1 - q)$$

$$\langle \psi | \Delta R_q | \psi \rangle = \begin{pmatrix} \sqrt{2}(1-q) & \sqrt{2}(1-q) & \sqrt{2}(1-q) \\ \sqrt{2}(1-q) & \sqrt{2}(1-q) & \sqrt{2}(1-q) \\ \sqrt{2}(1-q) & \sqrt{2}(1-q) & 0 \end{pmatrix} + o(1-q)$$

 As q → 1, these correctly reproduce a rotation of π around the x-axis with null uncertainty.