Quantum Euler angles and agency－dependent space－time
 Giuseppe Fabiano－University of Naples «Federico II»

In collaboration with：
G．Amelino－Camelia，V．D＇Esposito，D．Frattulillo，P．Hoehn，F． Mercati

XXV SIGRAV Conference on General Relativity and Gravitation

Quantum space-time and symmetries

- Theoretical investigations in quantum gravity suggest that space-time itself should acquire «quantum features»
- Relativistic transformations also acquire quantum features, in order for the quantum space-time properties to be valid for every observer
- Observers are connected by quantum group transformations
- As a case study, we will consider the $S U_{q}(2)$ quantum group, to investigate purely rotated systems.

$S U(2)$ coordinatization and Euler Angles

- In classical and quantum mechanics, rotation transformations are governed by the group SU(2)

$$
\begin{aligned}
S U(2) \ni U= & \left(\begin{array}{cc}
a & -c^{*} \\
c & a^{*}
\end{array}\right) \quad a, c \in \mathbb{C}:|a|^{2}+|c|^{2}=1 \\
& a=e^{i \chi} \sin \left(\frac{\theta}{2}\right) \quad c=e^{i \phi} \cos \left(\frac{\theta}{2}\right)
\end{aligned}
$$

- SU(2) parameters and Euler Angles

$$
\left\{\begin{array}{c}
\theta=\beta \\
\chi=\frac{\alpha+\gamma}{2} \\
\phi=\frac{\pi}{2}-\frac{\alpha-\gamma}{2}
\end{array}\right.
$$

Link between $S U(2)$ and $S O$ (3)

- The connection between $\operatorname{SU}(2)$ and classical rotations is established via the canonical homomorphism with $\mathrm{SO}(3)$.

$$
R=\left(\begin{array}{ccc}
\frac{1}{2}\left(a^{2}-c^{2}+\left(a^{*}\right)^{2}-\left(c^{*}\right)^{2}\right) & \frac{i}{2}\left(-a^{2}+c^{2}+\left(a^{*}\right)^{2}-\left(c^{*}\right)^{2}\right) & a^{*} c+c^{*} a \\
\frac{i}{2}\left(a^{2}+c^{2}-\left(a^{*}\right)^{2}-\left(c^{*}\right)^{2}\right) & \frac{1}{2}\left(a^{2}+c^{2}+\left(a^{*}\right)^{2}+\left(c^{*}\right)^{2}\right) & -i\left(a^{*} c-c^{*} a\right) \\
-\left(a c+c^{*} a^{*}\right) & i\left(a c-c^{*} a^{*}\right) & 1-2 c c^{*}
\end{array}\right)
$$

- Parameters become the generators of $C_{q}(S U(2))$, the algebra of complex functions on $S U(2)$

$$
\left(\begin{array}{cc}
a & -c^{*} \\
c & a^{*}
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right) \quad a, c \in C_{q}(S U(2))
$$

endowed with a non-commutative product realized by

$$
\begin{array}{cc}
a c=q c a & a c^{*}=q c^{*} a \\
c^{*} c+a^{*} a=1 & a c^{*}=c^{*} c \\
-a^{*} a=\left(1-q^{2}\right) c^{*} c
\end{array}
$$

- q is a «small» deformation parameter, larger than 0 and close to 1.

Homomorphism between $S U_{q}(2)$ and $S O_{q}(3)$

- $C_{q}(S O(3)):=C_{q}\left(S U(2) / Z_{2}\right)$, realizing the q-analogue of the $S U(2)$ to $S O$ (3) homomorphism
- A 3×3 matrix representation is given by

$$
R_{q}=\left(\begin{array}{ccc}
\frac{1}{2}\left(a^{2}-q c^{2}+\left(a^{*}\right)^{2}-q\left(c^{*}\right)^{2}\right) & \frac{i}{2}\left(-a^{2}+q c^{2}+\left(a^{*}\right)^{2}-q\left(c^{*}\right)^{2}\right) & \frac{1}{2}\left(1+q^{2}\right)\left(a^{*} c+c^{*} a\right) \\
\frac{i}{2}\left(a^{2}+q c^{2}-\left(a^{*}\right)^{2}-q\left(c^{*}\right)^{2}\right) & \frac{1}{2}\left(a^{2}+q c^{2}+\left(a^{*}\right)^{2}+q\left(c^{*}\right)^{2}\right) & -\frac{i}{2}\left(1+q^{2}\right)\left(a^{*} c-c^{*} a\right) \\
-\left(a c+c^{*} a^{*}\right) & i\left(a c-c^{*} a^{*}\right) & 1-\left(1+q^{2}\right) c c^{*}
\end{array}\right)
$$

- This is not a real valued matrix anymore, it contains operators

$S U_{q}(2)$ representations

- The Hilbert space containing the two unique irreducible representations of the $S U_{q}(2)$ algebra is $H=H_{\pi} \oplus H_{\rho}$, where $H_{\pi}=L^{2}\left(S^{1}\right) \otimes L^{2}\left(S^{1}\right) \otimes \ell$ and $H_{\rho}=L^{2}\left(S^{1}\right)$
- $\rho(a)|\eta\rangle=e^{i \eta}|\eta\rangle ; \quad \rho\left(a^{*}\right)|\eta\rangle=e^{-i \eta}|\eta\rangle ; \quad \rho(c)|\eta\rangle=0 ; \quad \rho\left(c^{*}\right)|\eta\rangle=0 ;$
- $\pi(a)|n, \delta, \epsilon\rangle=e^{i \epsilon} \sqrt{\left(1-q^{2 n}\right)}|n-1, \delta, \epsilon\rangle ; \quad \pi\left(a^{*}\right)|n, \delta, \epsilon\rangle=e^{-i \epsilon} \sqrt{\left(1-q^{2 n+2}\right)}|n+1, \delta, \epsilon\rangle ;$
- $\left.\pi(c)|n, \delta, \epsilon\rangle=e^{i \delta} q^{n}|n, \delta, \epsilon\rangle ; \quad \pi\left(c^{*}\right)|n, \delta, \epsilon\rangle=e^{-i \delta} q^{n} \mid n, \delta, \epsilon\right) ;$
- $a=e^{i \chi} \cos \left(\frac{\theta}{2}\right) \quad c=e^{i \phi} \sin \left(\frac{\theta}{2}\right)$
(Classical case)

Quantum Euler Angles (1)

- We promote the SU(2)-Euler Angles relations to the quantum case.
- Comparing the phases of a and c to their classical analogues, we identify ϵ with χ and δ with ϕ. They are continuous and play the same role as before.
- Exploiting the fact that c is a diagonal operator

$$
q^{n}=\operatorname{Sin}\left(\frac{\theta(n)}{2}\right) \leftrightarrow \theta(n)=2 \operatorname{Arcin}\left(q^{n}\right)
$$

Quantum Euler Angles (2)

$$
\begin{gathered}
\theta(n)=2 \operatorname{Arcin}\left(q^{n}\right) \\
\mathrm{q}=0.99
\end{gathered}
$$

Physical interpretation and Quantum rotations

- A state $|\psi\rangle \in H$ is representative of the relative orientation between two reference frames, A and B .
- Our interpretation is that the mean value of R_{q} on $|\psi\rangle$ will give an estimate of the entries of the rotation matrix that connects A and B

$$
\langle\psi| R_{q}|\psi\rangle_{\mathrm{ij}}
$$

- However, due to non-commutatitvity, we will have a non vanishing variance for the matrix elements, in general:

$$
\Delta_{i j}=\sqrt{\langle\psi| R_{q}^{2}|\psi\rangle_{\mathrm{ij}}-\langle\psi| R_{q}|\psi\rangle_{\mathrm{ij}}^{2}}
$$

Examples of Quantum rotations

- Basis states in representation ρ have $\Delta_{i j}=0$ and the mean value of R_{q} on such states gives sharp rotations around the z -axis.
- Superpositions of basis states in representation π yield non-zero values of $\Delta_{i j}$ and the mean value of R_{q} gives rise to deformed rotation matrices, which reduce to standard rotation matrices about an axis in the $x-y$ plane in the commutative limit

Same stars, different skies

- Fuzziness of space-time points depends on the choices made by the observer. In this sense, the reconstructed space-time is agency-dependent.

Thanks for the attention!

Example: rotation around the \mathbf{z}-axis

- Consider a state $|x\rangle$ in representation ρ. The mean value of the rotation matrix is:

$$
\langle\chi| R_{q}|\chi\rangle_{\mathrm{ij}}=\left(\begin{array}{ccc}
\cos (2 \chi) & -\sin (2 \chi) & 0 \\
\sin (2 \chi) & \cos (2 \chi) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- It coincides with a standard $S O$ (3) rotation matrix. Indeed, computing the uncertainties, we have

$$
\Delta_{i j}=0 \rightarrow \text { Sharp rotations around the z-axis }
$$

«Physical» states construction

- To effectively describe rotations' deformations, we demand that our states of geometry $|\psi\rangle$ satisfy

$$
\langle\psi| R_{q}|\psi\rangle_{i j} \rightarrow\left(R_{i j}\right) \quad \Delta_{i j} \rightarrow 0 \quad \text { when } q \rightarrow 1
$$

where $\left(R_{i j}\right)$ are the entries of a classical rotation matrix.

- Since (ϕ, χ) behave as in the classical case, we must look for states of the form

$$
|\psi\rangle=\sum_{n=0}^{\infty} c_{n}|n, \phi, \chi\rangle
$$

heavily weighted around \bar{n} and which satisfy the criteria above, to properly describe a rotation deformation of Euler angles $(\phi, \chi, \theta(\bar{n}))$

Example: rotation of π around the x-axis

- Consider the state $|\psi\rangle=|n ; \chi ; \phi\rangle=\left|0 ; \frac{\pi}{2} ; 0\right\rangle$. The relevant quantities, working at first order in $(1-q)$

$$
\begin{array}{r}
\langle\psi| R_{q}|\psi\rangle=\left(\begin{array}{ccc}
1-(1-q) & 0 & 0 \\
0 & -1+(1-q) & 0 \\
0 & 0 & -1+2(1-q)
\end{array}\right)+o(1-q) \\
\langle\psi| \Delta R_{q}|\psi\rangle=\left(\begin{array}{ccc}
\sqrt{2}(1-q) & \sqrt{2}(1-q) & \sqrt{2(1-q)} \\
\sqrt{2}(1-q) & \sqrt{2}(1-q) & \sqrt{2(1-q)} \\
\sqrt{2(1-q)} & \sqrt{2(1-q)} & 0
\end{array}\right)+o(1-q)
\end{array}
$$

- As $q \rightarrow 1$, these correctly reproduce a rotation of π around the x-axis with null uncertainty.

