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Quantum space-time and symmetries 

• Theoretical investigations in quantum gravity suggest that space-time itself 
should acquire «quantum features»

• Relativistic transformations also acquire quantum features, in order for the 
quantum space-time properties to be valid for every observer

• Observers are connected by quantum group transformations

• As a case study, we will consider the 𝑆𝑈𝑞 2 quantum group, to investigate 

purely rotated systems.  



• In classical and quantum mechanics, rotation transformations are governed by 
the group SU(2)

𝑆𝑈 2 ∋ 𝑈 =
𝑎 −𝑐∗

𝑐 𝑎∗ 𝑎, 𝑐 ∈ ℂ ∶ 𝑎 2 + 𝑐 2 = 1

𝑎 = 𝑒𝑖𝜒 sin
𝜃

2
𝑐 = 𝑒𝑖𝜙 cos

𝜃

2

• SU(2) parameters and Euler Angles
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𝑺𝑼 𝟐  coordinatization and Euler Angles



Link between 𝑺𝑼 𝟐 and 𝑺𝑶 𝟑

𝑅 =

1

2
(𝑎2 − 𝑐2 + 𝑎∗ 2 − 𝑐∗ 2)

𝑖

2
(−𝑎2 + 𝑐2 + 𝑎∗ 2 − 𝑐∗ 2) 𝑎∗𝑐 + 𝑐∗𝑎

𝑖

2
(𝑎2 + 𝑐2 − 𝑎∗ 2 − 𝑐∗ 2)

1

2
(𝑎2 + 𝑐2 + 𝑎∗ 2 + 𝑐∗ 2) −𝑖 (𝑎∗𝑐 − 𝑐∗𝑎)

−(𝑎𝑐 + 𝑐∗𝑎∗) 𝑖(𝑎𝑐 − 𝑐∗𝑎∗) 1 − 2𝑐𝑐∗

• The connection between SU 2  and classical rotations is established via 
the canonical homomorphism with SO 3 .



𝑺𝑼𝒒 𝟐  

• Parameters become the generators of 𝐶𝑞 𝑆𝑈 2 , the algebra of complex functions

on 𝑆𝑈 2

endowed with a non-commutative product realized by

• 𝑞 is a «small» deformation parameter, larger than 0 and close to 1.

Idempotent states on coquantum on Uq(2)Uq(2), SUq(2)SUq(2), and SOq(3) - Uwe Franz Adam Skalski and Reiji Tomatsu - Journal of Noncommutative Geometry 

𝑎 −𝑐∗

𝑐 𝑎∗ ⇒
𝑎 −𝑞𝑐∗

𝑐 𝑎∗ 𝑎, 𝑐 ∈ 𝐶𝑞 𝑆𝑈 2

𝑎𝑐 = 𝑞𝑐𝑎 𝑎𝑐∗ = 𝑞𝑐∗𝑎 𝑐𝑐∗ = 𝑐∗𝑐

𝑐∗𝑐 + 𝑎∗𝑎 = 1 𝑎𝑎∗ − 𝑎∗𝑎 = 1 − 𝑞2 𝑐∗𝑐



Homomorphism between 𝑺𝑼𝒒 𝟐  and 𝑺𝑶𝒒 𝟑

• 𝐶𝑞 𝑆𝑂 3 ≔ 𝐶𝑞 𝑆𝑈 2 /𝑍2 , realizing the q-analogue of the 𝑆𝑈 2 to 𝑆𝑂 3

homomorphism

• A 3x3 matrix representation is given by 

𝑅𝑞 =

1

2
(𝑎2 − 𝑞𝑐2 + 𝑎∗ 2 − 𝑞 𝑐∗ 2)

𝑖

2
(−𝑎2 + 𝑞𝑐2 + 𝑎∗ 2 − 𝑞 𝑐∗ 2)

1

2
1 + 𝑞2 (𝑎∗𝑐 + 𝑐∗𝑎)

𝑖

2
(𝑎2 + 𝑞𝑐2 − 𝑎∗ 2 − 𝑞 𝑐∗ 2)

1

2
(𝑎2 + 𝑞𝑐2 + 𝑎∗ 2 + 𝑞 𝑐∗ 2) −

𝑖

2
(1 + 𝑞2) (𝑎∗𝑐 − 𝑐∗𝑎)

−(𝑎𝑐 + 𝑐∗𝑎∗) 𝑖(𝑎𝑐 − 𝑐∗𝑎∗) 1 − (1 + q2)𝑐𝑐∗

• This is not a real valued matrix anymore, it contains operators

. Podles, “Symmetries of quantum spaces. subgroups and quotient spaces of quantumsu (2) andso

(3) groups,” Communications in Mathematical Physics, vol. 170, no. 1, pp. 1–20, 1995



𝑺𝑼𝒒(𝟐) representations 

• The Hilbert space containing the two unique irreducible representations of the 𝑆𝑈𝑞(2) 
algebra is 𝐻 = 𝐻𝜋 ⊕ 𝐻𝜌, where 𝐻𝜋 =  𝐿2 𝑆1 ⊗ 𝐿2 𝑆1 ⊗ ℓ and 𝐻𝜌  =  𝐿2(𝑆1)

• 𝜌 𝑎 𝜂 = 𝑒𝑖𝜂 𝜂 ;  𝜌 𝑎∗ 𝜂 = 𝑒−𝑖𝜂 𝜂 ; 𝜌 𝑐 𝜂 = 0;  𝜌 𝑐∗ 𝜂 = 0;

• 𝜋 𝑎 𝑛, 𝛿 , 𝜖 = 𝑒𝑖𝜖 (1 − 𝑞2𝑛) 𝑛 − 1, 𝛿 , 𝜖 ;  𝜋 𝑎∗ 𝑛, 𝛿 , 𝜖 = 𝑒−𝑖𝜖 (1 − 𝑞2𝑛+2) 𝑛 + 1, 𝛿 , 𝜖 ;

• 𝜋 𝑐 𝑛, 𝛿 , 𝜖 = 𝑒𝑖𝛿𝑞𝑛 𝑛, 𝛿 , 𝜖 ; 𝜋 𝑐∗ 𝑛, 𝛿 , 𝜖 = 𝑒−𝑖𝛿𝑞𝑛 𝑛, 𝛿 , 𝜖 ;

• 𝑎 = 𝑒𝑖𝜒 cos
𝜃

2
 𝑐 = 𝑒𝑖𝜙 sin

𝜃

2
(Classical case)



Quantum Euler Angles (1) 

• We promote the SU(2)-Euler Angles relations to the quantum case. 

• Comparing the phases of 𝑎 and 𝑐 to their classical analogues, we identify 
𝜖 with 𝜒 and 𝛿 with 𝜙. They are continuous and play the same role as 
before.

• Exploiting the fact that 𝑐 is a diagonal operator

𝑞𝑛 = 𝑆𝑖𝑛
𝜃 𝑛

2
↔ 𝜃 𝑛 = 2𝐴𝑟𝑐𝑖𝑛(𝑞𝑛)



Quantum Euler Angles (2) 

𝜃 𝑛 = 2𝐴𝑟𝑐𝑖𝑛(𝑞𝑛)
      q=0.99



Physical interpretation and Quantum rotations

• A state 𝜓 ∈ 𝐻 is representative of the relative orientation between two
reference frames, A and B.

• Our interpretation is that the mean value of 𝑅𝑞 on 𝜓 will give an estimate of the 

entries of the rotation matrix that connects A and B

⟨𝜓|𝑅𝑞 𝜓 ij

• However, due to non-commutatitvity, we will have a non vanishing variance for the 
matrix elements, in general:

Δ𝑖𝑗 = ⟨𝜓|𝑅𝑞
2 𝜓 ij − ⟨𝜓|𝑅𝑞 𝜓 ij

2



Examples of Quantum rotations 

• Basis states in representation 𝜌 have Δ𝑖𝑗 = 0 and the mean value of 𝑅𝑞 on such 

states gives sharp rotations around the z-axis.

• Superpositions of basis states in representation 𝜋 yield non-zero values of Δ𝑖𝑗

and the mean value of 𝑅𝑞 gives rise to deformed rotation matrices, which 

reduce to standard rotation matrices about an axis in the 𝑥 − 𝑦 plane in the 
commutative limit



Same stars, different skies

• Fuzziness of space-time points depends on the choices made by the observer. 
In this sense, the reconstructed space-time is agency-dependent.



Thanks for the attention! 



Example: rotation around the z-axis

• Consider a state 𝜒 in representation 𝜌. The mean value of the rotation matrix
is:

• It coincides with a standard 𝑆𝑂(3) rotation matrix. Indeed, computing the 
uncertainties, we have

Δ𝑖𝑗 = 0 → Sharp rotations around the z-axis

⟨𝜒|𝑅𝑞 𝜒 ij =
cos( 2𝜒) − sin( 2𝜒) 0
sin( 2𝜒) cos( 2𝜒) 0

0 0 1



«Physical» states construction

• To effectively describe rotations’ deformations, we demand that our states of 
geometry |𝜓⟩ satisfy 

    where 𝑅𝑖𝑗  are the entries of a classical rotation matrix.

• Since (𝜙, 𝜒) behave as in the classical case, we must look for states of the 
form 

    heavily weighted around ത𝑛 and which satisfy the criteria above,
    to properly describe a rotation deformation of Euler angles (𝜙, 𝜒, 𝜃 ത𝑛 )

𝜓 𝑅𝑞 𝜓
𝑖𝑗

→ 𝑅𝑖𝑗 Δ𝑖𝑗 → 0 when 𝑞 → 1

𝜓 = ෍

𝑛=0

∞

𝑐𝑛|𝑛, 𝜙, 𝜒⟩



Example: rotation of 𝝅 around the x-axis

• Consider the state 𝜓 = 𝑛; 𝜒; 𝜙 = 0;
𝜋

2
; 0 . The relevant quantities, 

working at first order in (1 − 𝑞)

• As 𝑞 → 1, these correctly reproduce a rotation of 𝜋 around the x-axis with 
null uncertainty. 

𝜓 𝑅𝑞 𝜓 =

1 − (1 − 𝑞) 0 0
0 −1 + (1 − 𝑞) 0
0 0 −1 + 2(1 − 𝑞)

+ o(1 − q)

𝜓 Δ𝑅𝑞 𝜓 =

2(1 − 𝑞) 2(1 − 𝑞) 2(1 − 𝑞)

2(1 − 𝑞) 2(1 − 𝑞) 2(1 − 𝑞)

2(1 − 𝑞) 2(1 − 𝑞) 0

+ 𝑜(1 − 𝑞)
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