Geometry of the black-to-white hole transition

Farshid Soltani

Based on work with M. Han and C. Rovelli

Oppenheimer–Snyder collapse

Oppenheimer–Snyder collapse

Quantum gravitational effects cannot be neglected in:

- Region A: large curvature near classical singularity
- Region B: physics of the horizon at the end of the evaporation
- Region C: quantum gravity regime of the collapsing matter

Interior of the star (region C)

Classical case

Planck units $(c = G = \hbar = 1)$

(Loop-)Quantum case

Interior of the star (region C)

Classical case

Planck units $(c = G = \hbar = 1)$

(Loop-)Quantum case

$$egin{array}{lll} rac{\dot{a}^2}{a^2} &= rac{8\pi}{3}
hoigg(1-rac{
ho}{
ho_c}igg) \ & igg(A=rac{3}{2\pi
ho_c} \ a(T) &= igg(rac{9mT^2+Am}{2R_{
m star}^3}igg)^{1/3} \end{array}$$

Ashtekar, Pawlowski, Singh (2006) Kelly, Santacruz, Wilson-Ewing (2020)

Exterior of the star (region A)

Classical case

$${
m ds}^2{=}-f(r)\,{
m d}t^2+f^{-1}(r)\,{
m d}r^2+r^2\,{
m d}\Omega^2$$
 $f(r)=1-rac{2m}{r}$ $r_{
m h}=2m$

Exterior of the star (region A)

$$\left(A=rac{3}{2\pi
ho_c}\ll\,m^2
ight)$$

(Loop-)Quantum case

$$egin{aligned} \mathrm{d} \mathrm{s}^2 &= - \, f(r) \, \mathrm{d} t^2 + f^{-1}(r) \, \mathrm{d} r^2 + r^2 \, \mathrm{d} \Omega^2 \ & \ f(r) &= 1 - rac{2m}{r} + rac{Am^2}{r^4} \ & \ r_+ &= 2m + O(A/m) \ & \ r_- &= \sqrt[3]{Am/2} + Oigg(A^{2/3}/m^{1/3}igg) \end{aligned}$$

Kelly, Santacruz, Wilson-Ewing (2020) Lewandowski, Ma, Yang, Zhang (2023)

Haggard and Rovelli (2015)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

Physics of the horizons

Han, Rovelli, FS (2023)

Future work

- Further study the physics of the effective metric in region B
- Study the quantum physics of region B with covariant LQG
- Study the stability of the inner horizon under mass inflation
- Generalize the model to physical rotating black holes
- Take into account Hawking evaporation process