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Introduction

Despite the long history of efforts at spacelike singularity resolution in the classical GR
solutions, the investigation of the non-singular, or so-called regular, black holes (RBH)
and their regular rotating counterparts is extremely popular nowadays.

To construct a static regular solution, one relies on one of the following approaches:
· to solve Einstein’s field equations associated with a special kind of spacetime

symmetry and matter sources;
· to derive a solution as quantum corrections to the classical one;
· to write the metric ad hoc, motivating it by phenomenological ”tractability”, and

try to analyze the effective matter content.

Nevertheless, figuring out the source sustaining the latter’s appealing spacetimes is not
trivial. In particular, one can regularize the Schwarzschild metric by replacing the radial
coordinate, u →

√
u2 + b2, resulting in a richer causal structure interpolating between

a traversable wormhole and a black bounce geometry (Simpson & Visser, JCAP, 2019):

ds2 =
(
1 −

2m
√
u2 + b2

) (
dx0)2 −

du2

1 −
2m

√
u2 + b2

−
(
u2 + b2)dΩ2

2.

This even one-parameter extension is sustained by a phantom scalar field and a
magnetic field within nonlinear electrodynamics (Bronnikov & Walia, Phys.Rev.D, 2022).

The physical source for other black bounce spacetimes, not to mention numerous RBH
models, is unknown. The only known thing about the sources in GR is the necessity to
violate the energy dominance condition to avoid singularities (Hawking & Penrose, 1970).
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Introduction

Generalizing to realistic cases, rotating geometry, by imposing axial symmetry is more
challenging: there are still only a few ways to introduce rotation into spacetime.

♢ The first in origin is the Newman-Janis algorithm (NJA), which provides a set of
steps to derive the axially symmetric solutions from the spherically symmetric ones:
· Schwarzschild → Kerr (Newman & Janis, J.Math.Phys., 1965);
· Reissner–Nordström → Kerr–Newman (Newman [et al.], J.Math.Phys., 1965).
The rigorous validity: the spacetime is an empty solution of Einstein’s equations (EE)
and belongs to the Kerr–Schild algebraic class (Schiffer [et al.], J.Math.Phys., 1973).
However, the existence of the Kerr–Newman solution indicates that the first one is not
necessary for NJA to be successful in general; this is established by the EE’s fulfillment.

Notwithstanding, NJA is widely used to generate regular rotating solution disregarding
either the source of a seed metric and/or its rotating counterpart.

♢ One can generate a stationary solution by implication of an unknown function arising
as a conformal metric multiplier, which explicit form is governed by the reducibility to
the Boyer–Lindquist form and EE (Azreg-Äınou, Eur.Phys.J.C, 2014 & Phys.Rev.D, 2014).

Consequently, this technique assumes that the physical source is known.
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Introduction

♢ A vacuum or electrovacuum axisymmetric solution can be obtained via the Ernst
equation (Ernst, Phys.Rev. 167 & 168, 1968).

Its generalization to other cases is unknown.

Since the regularized GR solution requires a violation of energy dominance conditions,
this may lead to interpolation between a regular black hole and a wormhole.

♢ The remaining solutions to the non-vacuum EE are known either perturbatively in a
slow-rotation approximation (Kashargin & Sushkov, Grav.Cosmol. & Phys.Rev.D, 2008) or
numerically (Kleihaus & Kunz, Phys.Rev.D, 2014; Chew,Kleihaus & Kunz, Phys.Rev.D, 2016)

In this talk:

We examined NJA on the so-called regular phantom black hole (Bronnikov & Fabris,
Phys.Rev.Lett., 2006), whose geometry either provides a wormhole or a RBH with a
Schwarzschild-like causal structure but with an asymptotically de Sitter expansion
instead of a singularity.

This completely solvable example permits the matter’s content via geometry.
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Seed regular geometry

Consider the following spherically symmetric metric:

ds2 = A(u)
(
dx0)2 −

du2

A(u)
− r2

(
u
)((

dx2)2 + sin2 x2(dx3)2); u ∈ (−∞; +∞),

where r(u) is regular, positive everywhere and has at least one minimum at some u∗:

r(u∗) > 0, r ′(u∗) = 0, r ′′(u∗) > 0, and r(u) ∼ |u| at u → ±∞.

The exact solution can be derived for a minimally coupled scalar field with a wide set
L
(
ϕ, (ϕ,µ)2

)
, which is able to violate the NEC: Tµ

ν [ϕ]kµkν ≥ 0 , ∀kµ : kµkµ = 0.

For ϕ = ϕ(u), by noting G0
0 − G2

2 and choosing the simplest r(u) =
√
u2 + b2, we get

A(u) = 1 + c1
(
u2 + b2)+ c2

((
u2 + b2) tan−1 u

b
+ ub

)
.

Depending on c1 and c2 values, the obtained solution may be asymptotically flat or
anti–de Sitter in the static region and asymptotically de Sitter in the nonstatic region.

By setting c1 = −πc2/2 and c2b3 ≡ u0 to ensure the regularity of A(u) at b → 0 and
the Schwarzschild-like form, i.e., A(u) ≃ 1 − 2u0/3u at u → +∞, one obtains

A(u) = 1 −
u0

b3

((
u2 + b2) cot−1 u

b
− ub

)
.

We have a traversable wormhole if 2b > πu0 (including as the exceptional case the
Bronnikov–Ellis wormhole, u0 = 0) or a RBH

(
0 < 2b ≤ πu0

)
with a single horizon.

Beyond the event horizon there is a bounce to anisotropic Kantowski–Sachs cosmology.
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From the Schwarzschild-like RBH to the Kerr-like RBH: Newman–Janis algorithm’ steps

The Newman–Janis algorithm is based on introducing a vierbein of null vectors
eα =

(
l, n,m, m̄

)
and a series of complex conjugation transformations.

The steps are the following:

i) Switch to null (Eddington–Finkelstein) coordinates, dx0 → dτ = dx0 − du/A(u) ,
expressing the seed geometry as ds2 =

(
lµnν −mµm̄ν

)
dxµdxν via the null vectors

lµ = δµu , nµ = δµτ −
A(u)

2
δµu , mµ =

1
√

2r(u)

(
δµ2 +

i

sin x2 δµ3

)
;

ii) Complexify the seed metric functions, i.e., replace the redshift function A(u) by a
new one A(u, ū) and the area function r(u) in complex null vectors mµ and m̄µ as
r(u) =

√
u2 + b2 and r̄(u) =

√
ū2 + b2 , requiring at u = ū the recovery of initial eα;

iii) Apply complex transformation coordinates, xµ → x ′µ = xµ − ia cos x2(δµτ − δµu
)
,

treating the primed coordinates as real with the tetrad transform, eµα → e′µα = eνα
∂x′µ

∂xν
,

yielding the new g ′µν = 2l ′(µn′ ν) − 2m′(µm̄′ ν) expression, and find an inverse metric;

iv) Revert the metric to the Boyer–Lindquist coordinates, which furnish only a single
off-diagonal component, gτx3 , throught an integrable coordinate transformation.
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From the regular Schwarzschild-like BH to the regular Kerr-like BH

In our regular seed geometry’ case, after steps i)—iii), we arrive at the inverse metric
in the ingoing Eddington–Finkelstein coordinates being written via a line element

ds′
2
= A

(
u′, x2′)(dτ ′ − a sin2 x2′dx3′

)2
+ 2

(
dτ ′ − a sin2 x2′dx3′

)(
du′ + a sin2 x2′dx3′

)
−r r̄

(
u′, x2′)((dx2′)2 + sin2 x2′(dx3′)2),

where

A
(
u′, x2′) = 1 +

u0u′

b2 +
au0u′

2b3 cos x2′ ln
u′2 +

(
b − a cos x2′)2

u′2 +
(
b + a cos x2′

)2 +
+

u0

2b3

(
u′2 − a2 cos2 x2′ + b2

)(
tan−1 u′

b + a cos x2′ + tan−1 u′

b − a cos x2′ − π

)
and

r r̄
(
u′, x2′) =

√(
u′2 − a2 cos2 x2′ + b2

)2
+ 4a2u′2 cos2 x2′.

This obtained geometry does not contain Kerr’s usual ring coordinate singularity at
u′ = 0 and x2′ = π/2, and it turns into the Kerr original one at the b → 0 limit.

The curvature invariants for the obtained rotated solution are finite in the entire range
of the u′ coordinate: R ∼

(
r r̄
)−3 and RαβR

αβ ∼ RαβγδR
αβγδ ∼

(
r r̄
)−6 are globally

regular if a ̸= b, and at the b → 0 limit the standard Kerr’ features are observed.
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From the regular Schwarzschild-like BH to the regular Kerr-like BH: NJA’ final step

As the final step, it is not possible to find such integrable coordinate transformation,
dτ ′ → dτ = dτ ′ − α(u′)du′ and dx ′3 → dx3 = dx ′3 − β(u′)du′, that preserve α(u′)

and β(u′) independent of x2′. Though we note that for a small regularizing parameter:

α(u′, x2′) =
g ′τu

g ′uu ≃
u′2 + a2

u′2 + a2 − 2u0u′/3
+ O(b2),

β(u′, x2′) =
g ′ux3

g ′uu ≃
a

u′2 + a2 − 2u0u′/3
+ O(b2),

these functions provide the Boyer–Lindquist transform; spacetime, being algebraically
general, degenerates to an algebraically special and of Petrov type D up to O(b2).

In the slow-rotation approximation,

α(u′, x2′) ≃
1

A(u′)
−

a2
(
1 − A(u′)

)
A2(u′)r2(u′)

+ O(a4), β(u′, x2′) ≃
a

A(u′)r2(u′)
+ O(a3),

our obtained geometry can also be reduced to the Boyer–Lindquist representation:

ds2slow ≃
(
A(u′) + O

(
a2))dτ2 +

(
2a sin2 x2′(1 − A(u′)

)
+ O

(
a3))dτdx3−

−
(
A−1(u′) + O

(
a2))du′2 −

(
r2(u′) + O

(
a2))((dx2′)2 + sin2 x2′(dx3)2),

coinciding at u′ → +∞ with the slow rotation limit of the Kerr one up to O
(
u′−3) in

these coordinates.
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Source

For a phantom scalar field, everything can be explicitly expressed via geometry.
Hereafter, we apply a series of complex conjugation transformations in the NJ spirit.

As for the non-rotation case, the difference between Gτ
τ (= G0

0 ) and Gu
u , or Gτ

u itself,
being matched with the stress-energy tensor of the scalar field, yields

− 2
r ′′

r
= ϵϕ′2 → ϕph(u) = ±

√
2 tan−1 u

b
+ ϕ0 =

√
2 cot−1 u

b
.

The sum of Gτ
τ and Gu

u leads to an expression for potential via radial coordinate u:

V (u) =
u0

(
(3u2 + b2) cot−1 u

b
− 3ub

)
b3

(
u2 + b2

) .

One can reconstruct the exact expression for V (u) via inverting u = b cot
ϕph√

2
.

As for the rotating case, we complexified the scalar field, the potential, or Lagrangian
density itself, i.e., replaced it and applied the complex transformation coordinates.

The non-trivial components of the resulted stress-energy tensor are asymtotically
trivial at u → +∞, behave as Tµ

ν [ϕph] ∼ O(b2) at the b → 0 limit, and turn out
coinciding with the exact non-rotation ones if a = 0.
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Source

However, the mixed Einstein tensor’s components are all non-trivial and Gµ
ν = Tµ

ν [ϕph]
are satisfied asymptotically, being noticeably violated only at distances on the order of
the regularization parameter b, and Gµ

ν ∼ O(b2) at b → 0.
Since constructed geometry is Kerr’ spacetime up to O(b2), this is guaranteed.

The null energy condition for a null vector kµ, e.g., kµ =
(
1/A(u, x2),−1/2, 0, 0

)
,

Tµ
ν kµk

ν = −
1
4

(
ϕph(u, x

2)
)′
u

2
= −

b2
(
u2 + b2 − a2 cos2 x2

)2

2
(
u2 + (b − a cos x2)2

)2(
u2 + (b + a cos x2)2

)2

is distinctly violated near an arbitrarily small region and slightly, ∼ O(b2) at u → +∞.

Thereby, the EE’s discrepancy and a violation of the energy dominance conditions are
forced into this fairly small domain, for which parameter b is responsible. Among the
known literature examples, only the "eye of the storm" (Simpson & Visser, JCAP, 2022)
rotating RBH, being strictly a model, is similar in a sense of satisfying the classical
energy dominance conditions at infinity for external observers.
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Conclusion

· In spite of the RBH models’ extreme popularity, only a few exact solutions are
still known. To model realistic physical objects imposing axial symmetry, one will
face the fact that there has not been elaborated a technique to generate a
rotating solution from a static one.
Most of these approaches are applicable either to vacuum cases, to linearized EE
(which is the same as representing a metric in the Kerr–Schild form), or to exact
solutions with a known physical source (which almost all RBH cannot boast of).

· We applied the mainstream NJ approach to regular static spacetime sustained by
a phantom scalar field: at distances of the regularization parameter’s order, we
can predict or even conclude nothing due to the EE’ discrepancies.
Although coordinate complexification in the NJ spirit leads to a regular Kerr-like
BH, to an external observer, this will be nothing more than Kerr’s spacetime.

· Commonly, RBH’ models ad hoc are motivated mainly by phenomenology, with
possible observational verification. Many of them, or even pertubatively slowly
rotating solutions in alternative theories, are almost indistinguishable from the
GR solutions from an observational point of view (Psaltis [et al.], Phys.Rev.Lett.,
2008; Pani & Cardoso, Phys.Rev.D, 2009; Shaikh [et al.], MNRAS, 2021).
Moreover, the cost of simplicity and phenomenological “appealing”, e.g., of the
Simpson–Visser spacetime, are exotic sources.
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Is it worth enforcing an exotic matter description for the static regular
spacetimes, hereafter imposing axial symmetry approaches to rotating RBH

models?

Or is the search for alternative GR singularity treatments more perspective?

Thank you for your attention!
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Backup

Tµ
ν [ϕ] = ϵϕ

,µ
ϕ,ν−

δµν
2

ϵ ϕ
,α

ϕ,α+δ
µ
νV

(
ϕ
)
, V

(
ϕph

)
=

u0ϕph√
2b3

(
3−2 sin2 ϕph√

2

)
−

3u0

2b3 sin
√

2ϕph

ϕph
(
u, x2) =

π
√

2
−

1
√

2
tan−1 u

b + a cos x2 −
1
√

2
tan−1 u

b − a cos x2

In the slow-rotation limit Gτ
3 ∼ G u

τ ∼ G u
3 ∼ G2

τ ∼ G2
3 ∼ G3

τ ∼ O(a3), while other non-trivial
components ∼ O(a2).
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