CONSTRAINING MODIFICATIONS OF BLACK HOLE PERTURBATION POTENTIALS NEAR THE LIGHT RING WITH QUASI-NORMAL MODES

Sebastian H. Völkel

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany

Based on: Sebastian H. Völkel, Nicola Franchini, Enrico Barausse and Emanuele Berti PRD 106, 124036 (2022), arXiv:2209.10564 Bonus material: Peter James Nee, Sebastian H. Völkel, Harald P. Pfeiffer, PRD 108 (2023) 4, 044032, arxiv:2302.06634

XXV SIGRAV Conference on General Relativity and Gravitation

07 September 2023, Trieste, Italy

1 / 14

ERC-2018-COG GRAMS 815673

SEBASTIAN H. VÖLKEL

WHY QUASI-NORMAL MODES?

Motivation:

- quasi-normal modes (QNMs) are a central piece of black hole spectroscopy
- allow one to test the no-hair theorems hypotheses and general relativity (GR)
- black hole mergers measured by LVK¹ become more frequent and precise
- in principle clean test, less challenging astrophysics (e.g. compared to EHT²)
- multi disciplinary: perturbation theory, numerical relativity and data analysis

¹LIGO-Virgo-KAGRA (LVK) ²Event Horizon Telescope (EHT)

SEBASTIAN H. VÖLKEL

ARE THE RELEVANT PROBLEMS NOT ALREADY SOLVED?

Much activity in recent years on³:

- · robust extraction of QNM overtones from simulations
- non-linear modes and spherical mode coupling
- environmental effects and spectral stability
- · horizonless compact objects and "echoes"
- QNMs for rotating black holes beyond GR very challenging, much less known

³Giesler et al. PRX 9 041060 (2019), Mitman et al. PRL 130 081402 (2023), Baibhav et al. arxiv: 2302.03050, Nee et al., PRD 108, 044032, (2023), ...

SEBASTIAN H. VÖLKEL

ARE THE RELEVANT PROBLEMS NOT ALREADY SOLVED?

Much activity in recent years on³:

- · robust extraction of QNM overtones from simulations
- · non-linear modes and spherical mode coupling
- environmental effects and spectral stability
- · horizonless compact objects and "echoes"
- QNMs for rotating black holes beyond GR very challenging, much less known

If one would measure deviations tomorrow, what would one actually learn? (inverse problem)

³Giesler et al. PRX 9 041060 (2019), Mitman et al. PRL 130 081402 (2023), Baibhav et al. arxiv: 2302.03050, Nee et al., PRD 108, 044032, (2023), ...

SEBASTIAN H. VÖLKEL

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

"Phenomenological" approach beyond GR:

- · potential terms are being modified
- couplings between known and additional fields are introduced

Some comments for GR and beyond

Qualitative features of GR (vacuum):

- perturbation equations are separable
- no additional fields or couplings
- · axial and polar perturbations are isospectral

"Phenomenological" approach beyond GR:

- · potential terms are being modified
- couplings between known and additional fields are introduced

"Theory specific" approach:

- start from a theory, compute background and perturbations
- · clear connections between observations, metric and theory

MOTIVATION FOR OUR STUDIES

Assume a few QNMs would be known from observations ⁴:

- Can one recover the effective potential?
- Can one recover the presence of coupling functions to additional fields?
- Could one probe the underlying black hole metric?
- · How do measurement uncertainties impact the reconstruction?
- What are robust "features"? PN-like expansion: $\sim r_{\rm H}/r$?

⁴Other related works: SV and Barausse, PRD 102 084025 (2020) SV, Franchini and Barausse, PRD 105 084046 (2022)

SEBASTIAN H. VÖLKEL

METHODS OVERVIEW I

We adopt the parameterized framework to study non-rotating black holes^{5, 6}:

· coupled equations are a prototype for rotation and alternative theories

$$f\frac{\mathrm{d}}{\mathrm{d}r}\left(f\frac{\mathrm{d}\boldsymbol{\Phi}}{\mathrm{d}r}\right) + \left[\omega^2 - f\mathbf{V}\right]\boldsymbol{\Phi} = 0,\tag{1}$$

• with $f(r) = 1 - r_0/r$, with r_0 being the location of the event horizon and

$$\boldsymbol{\Phi} = \begin{bmatrix} \Phi^{scalar}, \Phi^{polar}, \Phi^{axial}, \dots \end{bmatrix}.$$
 (2)

⁵Cardoso et al., PRD 99 104077 (2019) ⁶McManus et al., PRD 100 044061 (2019)

SEBASTIAN H. VÖLKEL

METHODS OVERVIEW I

We adopt the parameterized framework to study non-rotating black holes^{5, 6}:

· coupled equations are a prototype for rotation and alternative theories

$$f\frac{\mathrm{d}}{\mathrm{d}r}\left(f\frac{\mathrm{d}\boldsymbol{\Phi}}{\mathrm{d}r}\right) + \left[\omega^2 - f\mathbf{V}\right]\boldsymbol{\Phi} = 0,\tag{1}$$

• with $f(r) = 1 - r_0/r$, with r_0 being the location of the event horizon and

$$\boldsymbol{\Phi} = \begin{bmatrix} \Phi^{\text{scalar}}, \Phi^{\text{polar}}, \Phi^{\text{axial}}, \dots \end{bmatrix}.$$
(2)

• it is assumed the potential can be written as ("natural extension" to GR)

$$V_{ij} = V_{ij}^{\text{GR}} + \delta V_{ij}, \qquad \delta V_{ij} = \frac{1}{r_H^2} \sum_{k=0}^{\infty} \alpha_{ij}^{(k)} \left(\frac{r_H}{r}\right)^k$$
(3)

⁵Cardoso et al., PRD 99 104077 (2019) ⁶McManus et al., PRD 100 044061 (2019)

SEBASTIAN H. VÖLKEL

METHODS OVERVIEW II

• approximate expression up to quadratic order in $\alpha^{(k)}$

$$\omega = \omega^{0} + \alpha_{ij}^{(k)} d_{(k)}^{ij} + \alpha_{ij}^{(k)} \partial_{\omega} \alpha_{pq}^{(s)} d_{(k)}^{ij} d_{(s)}^{pq} + \frac{1}{2} \alpha_{ij}^{(k)} \alpha_{pq}^{(s)} e_{(ks)}^{ijpq}$$
(4)

- coefficients $d_{(k)}$, $e_{(ks)}$ are universal, $\alpha^{(k)}$ theory dependent or free parameters
- coefficients of n = 1,2 overtones obtained recently⁷

Relative change of the QNM spectrum along small $\alpha^{(k)}$ range.

⁷SV, Franchini and Barausse, PRD 105 084046 (2022)

RESULTS I

GR: n = 0,1 QNMs ω with relative errors of 1.0%, 4.7%, 3.4%, 8.2%. We then sample $r_{\rm H}$ and $\alpha^{(k)}$ for k = 0...10. Left violins show $r_{\rm H}$ with one specific $\alpha^{(k)}$ varied at a time, right violins show $r_{\rm H}$ varied with all $\alpha^{(k)}$ at the same time. Different colors correspond to different prior ranges for $\alpha^{(k)}$.

RESULTS I

GR: n = 0,1 QNMs ω with relative errors of 1.0%, 4.7%, 3.4%, 8.2%. We then sample $r_{\rm H}$ and $\alpha^{(k)}$ for k = 0...10. Left violins show $r_{\rm H}$ with one specific $\alpha^{(k)}$ varied at a time, right violins show $r_{\rm H}$ varied with all $\alpha^{(k)}$ at the same time. Different colors correspond to different prior ranges for $\alpha^{(k)}$.

Non-GR: n = 0,1 QNMs $\vec{\omega}$ with non-zero $\alpha^{(k)}$ for k = 2 and k = 3 (shown in red), but other assumptions the same as in the GR case.

SEBASTIAN H. VÖLKEL

CAN ONE DO BETTER?

Previous results are not encouraging:

- single α_k cannot be robustly constrained, agnostic posteriors strongly correlated
- not surprising, $(r_{\rm H}/r)^k$ for weak fields, QNMs are related to the strong field

⁸Schutz and Will 1985, Iyer Will 1987, Konoplya 2003, ...

CAN ONE DO BETTER?

Previous results are not encouraging:

- single α_k cannot be robustly constrained, agnostic posteriors strongly correlated
- not surprising, $(r_{\rm H}/r)^k$ for weak fields, QNMs are related to the strong field

Do strongly correlated, agnostic $\alpha^{(k)}$ posteriors robustly constrain the potential peak?

WKB method connects derivatives of potential peak with QNMs⁸

$$\omega_n^2 = V^{(0)} + i\sqrt{-2V^{(2)}}\left(n + \frac{1}{2}\right) + \sum_i \tilde{\Lambda}_i(n)$$
(5)

- but, method is approximate, validity for strongly correlated $\alpha^{(k)}$ hard to quantify

⁸Schutz and Will 1985, Iyer Will 1987, Konoplya 2003, ...

RESULTS II

GR: Sampling derivatives of the effective potential with respect to tortoise coordinate from the "all $\alpha^{(k)}$ " posterior distributions (left sides) versus sampling from the priors of $\alpha^{(k)}$ (right sides).

RESULTS II

GR: Sampling derivatives of the effective potential with respect to tortoise coordinate from the "all $\alpha^{(k)}$ " posterior distributions (left sides) versus sampling from the priors of $\alpha^{(k)}$ (right sides).

Non-GR: Sampling derivatives of the effective potential with respect to tortoise coordinate from the "all $\alpha^{(k)}$ " posterior distributions (left sides) versus sampling from the priors of $\alpha^{(k)}$ (right sides).

SEBASTIAN H. VÖLKEL

AEI POTSDAM

10 / 14

Summary:

- potential/coupling corrections like $\alpha_k \left(r_{\rm H}/r
 ight)^k$ quite common beyond GR
- useful parametrization for direct problem, tricky for agnostic inverse problem
- MCMC analysis yields strong correlations, single α_k cannot be constrained
- · QNMs are very informative, robust feature is the local behavior around peak

Summary:

- potential/coupling corrections like $\alpha_k (r_{\rm H}/r)^k$ quite common beyond GR
- useful parametrization for direct problem, tricky for agnostic inverse problem
- MCMC analysis yields strong correlations, single α_k cannot be constrained
- · QNMs are very informative, robust feature is the local behavior around peak

The elephant in the room, can one robustly extract QNMs from signals? (comprehensive study: Vishal Baibhav+, arxiv:2302.03050)

TO RING OR NOT TO RING, THE TALE OF BLACK HOLE QUASI-NORMAL MODES

Peter James Nee, Sebastian H. Völkel, Harald P. Pfeiffer, PRD 108 (2023) 4, 044032, arxiv:2302.06634

title now: Role of black hole quasinormal mode overtones for ringdown analysis

Waveforms generated from the same Gaussian initial data evolved in the Pöschl-Teller potential (green) and GR potential (orange). The shaded area indicates a typical fit interval, starting at $t_0 - t_{\text{peak}}$, and ending at $T - t_{\text{peak}}$. Note that the time has been shifted to align both waveforms at their respective peak time t_{peak} , which introduced a relative shift with respect to the simulation time (not shown).

SEBASTIAN H. VÖLKEL

AEI POTSDAM

12 / 14

Results for a waveform generated using the Pöschl-Teller potential. We apply the PT and GR model with N = 1...3 modes, as well as the agnostic model with N = 1 or N = 2 modes. **Top panel**: mismatch \mathcal{M} as a function of starting time of the fit. **Bottom panel**: relative error δM of the recovered black hole mass as a function of starting time of the fit.

SEBASTIAN H. VÖLKEL

TO RING OR NOT TO RING, THE TALE OF BLACK HOLE QUASI-NORMAL MODES

SEBASTIAN H. VÖLKEL