
Running couplings in a higher 
derivative theory

Diego Buccio

D.B., Roberto Percacci, Renormalization group flows between gaussian fixed points, 
arXiv:2207.10596v1

D.B., John Donoghue, Roberto Percacci, Amplitudes and Renormalization Group 
Techniques: A Case Study, arXiv:2307.00055v2

XXV SIGRAV, 07/09/2023



Why higher derivative?
• Einstein general relativity as a QFT is not renormalizable

• Higher derivative operators 𝑅2, 𝑅𝜇𝜈𝑅𝜇𝜈  and 𝑅𝜇𝜈𝜌𝜆𝑅𝜇𝜈𝜌𝜆 contain a fourth 
derivative kinetic term for the metric

The theory is now power counting renormalizable [Stelle, ‘77]
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• Ostrogradsky instability, ghosts and breakdown of unitarity

• Quadratic gravity is Asymptotically Free [Avramidi & Barvinski, ‘85], but…
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Regularization and running

• In perturbation theory, there are different definitions of running 
couplings:

• In a theory without mass scales in the propagator, they are 
equivalent, since logarithmic terms in 𝜇 appear in the form 
log(𝜇2/𝑝2)

• In quadratic gravity we have introduced 𝜆/𝐺 = 𝐸2, hence the two 
runnings are inequivalent
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Where 𝑔(𝜇𝑅) has absorbed non-polynomial 
dependence of the amplitude from external 
momentum 𝑝 = 𝜇𝑅



Another definition for 𝜷 functions: FRG

• One inserts an IR regulator  Δ𝑆𝑘 𝜙 = ∫ 𝐷𝜙 𝜙𝑅 𝑘 𝜙 in the Euclidean 
action, which suppresses modes below the cutoff scale 𝑘 in functional 
integration

• 𝑘-dependent average effective action Γ𝑘[𝜑]

• Evolution of Γ𝑘[𝜑] can be described with an exact closed differential 
equation: k-running
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• Nonperturbative method, permits to quest for interacting fixed points

𝑘 → 0 𝑘 → ∞

Γ[𝜑] S[𝜑]
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A toy model

• To address the problem of definition of running couplings, we 
considered a simpler scalar model which could give some interesting 
insight 

• Shift symmetry 𝜙 → 𝜙 + 𝑐 and ℤ2 symmetry invariance
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Such derivative interaction can be generated by:

•  spontaneous  breaking of U(1) symmetry in a higher derivative linear 
sigma model

• interactions with gravity in the asymptotic safety scenario 
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FRG analysis
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Regimes in perturbative computations

Low Energy (LE): 

the heavy ghost is not 
dynamically active and 
can be integrated out.

High Energy (HE): 
Τ𝑔𝐸4 𝑀4 > 1 , one would 

expect a strongly interacting 
regime.

Intermediate Energy (IE): 
the heavy ghost is 
dynamically active, but the 
interaction is small
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XXV SIGRAV, 07/09/2023

Ԧ𝑝
=−

𝑖

𝑝2+
1

𝑚2𝑝4
= − 𝑖

1

𝑝2 −
1

𝑝2 +𝑚2



Effective Field Theory

• In the low energy regime, we consider only the quadratic kinetic term 
(𝑍2=0), plus higher derivative operators
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• We have 𝛽𝑔8
= 41𝑔2/480𝜋2, 𝛽𝑔8

′ = 𝑔2/240𝜋2. 

• At the same time, 𝛽𝑔  =  0 and 𝛽𝑍1
= 0.
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The higher derivative two-point function 

Tadpole diagram

One-loop quantum correction to the propagator
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• Using 𝝁-running : 𝛽𝑍1

𝜇
=

3
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𝑔𝑚4

𝑀4 , in agreement with 𝑘 → ∞ of FRG

• Logarithmic divergence independent of the momentum 𝑝: a field redefinition at a 
given energy is enough for all scales  no physical running
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The higher derivative scattering amplitude

The full one loop 4-point function comes from a bubble diagram
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High energy limit:
Using the low energy 𝑔,

Large logs with growing 𝑢, 𝑠, 𝑡.

To avoid breakdown of perturbation theory, 
redefinition of 𝑔 at 𝑠 = 𝑡 = 𝑢 = 𝜇𝑅

𝛽𝑔 = 5𝑔2𝑚4/16𝜋2 also in the physical running

Low energy limit:

Divergencies and large logs can be reabsorbed in 
the renormalization of 𝑔

𝛽𝑔
𝜇

 =  5𝑔2𝑚4/16𝜋2 in the 𝝁-running

𝛽𝑔 = 0 in the physical running

…
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The mass threshold

• When ghosts start to propagate, higher 
dimension operators do not run anymore.

•  In the low energy limit, only the physical 
running of 𝑔 matches the EFT, because 𝝁-
running can’t manage the freezeout of 
ghosts

• The FRG 𝛽𝑔 matches with the physical 

running in the asymptotic regions. When 
𝐸 ∼  𝑚, there is a strong dependence on 
the renormalization scheme.
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Discussion

• In the low energy EFT at one loop there are higher order operators 
with 6 and 8 derivatives, which disappear above the mass threshold

• The physical running is only defined in asymptotic regions. The FRG 
running of 𝑔 agrees there

• To match the FRG also with the two-point function, one should 
integrate the k-flow to zero and hence consider the dependence on 
external momenta: 𝒑-running (see [A. Codello, R. Percacci, L. Rachwal
and A. Tonero, ’16] for a 𝜙4 example) 

• At high energy, with 𝑔 <  0, the theory is AF and perturbative respect 
to the 4-derivative kinetic term, but also strongly interacting.
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Physical running in 𝑹𝟐

• In Quadratic Gravity, heat kernel technique has been used to compute 𝝁-running and 𝒌-running:

• Non-physical contributions in the UV region come from tadpole diagrams, as observed in our toy 
model. What remains if we neglect the contribution of tadpole diagrams?

• Physical running in HDNLSM has been studied in arXiv:2308.13704 by J. Donoghue and G. 
Menezes, we want to reproduce this study on Quadratic Gravity
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Thank you
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