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the role of boundary conditions
• Gravitational radiation makes the definition of energy ambiguous


• This ambiguity is commonly fixed by imposing Dirichlet b.c.


• Asymptotically flat — ADM, BMS


• Quasilocal — BY (up to anomalies)


• Analogy with thermodynamics: 


• Dirichlet = isothermal — internal energy


• Neumann = adiabatic — free energy


• How about gravity? What happens to energy if we use different types of 
boundary conditions?
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the role of boundary conditions
• Gravitational radiation makes the definition of energy ambiguous


• This ambiguity is commonly fixed by imposing Dirichlet b.c.


• Asymptotically flat — ADM, BMS


• Quasilocal — BY


• Analogy with thermodynamics: 


• isothermal — internal energy


• adiabatic — free energy


• How about gravity? What happens to energy if we use boundary conditions 
different than Dirichlet?

[Simone’s talk on Friday]



Noether’s theorem
if the Lagrangian has a continuous symmetry, then there is a current 

which is conserved on-shell. 



δϵL = dYϵ ⇒ djϵ ≈ 0, jϵ := Iϵθ − Yϵ, dθ :≈ δL



Noether’s theorem
if the Lagrangian has a continuous symmetry, then there is a current 

which is conserved on-shell. 



δϵL = dYϵ ⇒ djϵ ≈ 0, jϵ := Iϵθ − Yϵ, dθ :≈ δL

defined only up to corner terms


 conserved as well→ jϵ + da



Noether’s theorem
if the Lagrangian has a continuous symmetry, then there is a current 

which is conserved on-shell. 





 


     = constraint (global charge) + boundary term (surface charge)

δϵL = dYϵ ⇒ djϵ ≈ 0, jϵ := Iϵθ − Yϵ, dθ :≈ δL

jϵ = Cϵ + dqϵ



Noether’s theorem
global example:


Poincaré invariance: conserved energy-momentum tensor


gauge version:


local diffeo invariance: conservation of surface charges




general relativity
Einstein-Hilbert:                               


infinitesimal continuous symmetry: 


Noether current:                               

LEH = Rϵ

δξgμν = £ξgμν ⇒ δξL = diξL

jξ = Iξθ − Yξ = iξE + dqξ

jξ = Gμ
ν ξν − ∇ν ∇[μξν]

qξ = −
1
2

ϵμνρσ ∇ρξσdxμ ∧ dxν



general relativity
Einstein-Hilbert:                               


infinitesimal continuous symmetry: 


Noether current:                               

LEH = Rϵ

δξgμν = £ξgμν ⇒ δξL = diξL

jξ = Iξθ − Yξ = iξE + dqξ

jξ = Gμ
ν ξν − ∇ν ∇[μξν]

qξ = −
1
2

ϵμνρσ ∇ρξσdxμ ∧ dxν

for Kerr: ∫S
q∂φ

= aM

∫S
q∂t

=
M
2



scalar field with Neumann boundary conditions

• Consider the scalar field Lagrangian    


• spacetime translation symmetry: , 


•    Dirichlet b.c., 




• Neumann b.c.: 

ℒ =
1
2

∂μϕ∂μϕ

xν → xμ + ϵμ, δϵϕ = − ϵμ∂μϕ

δℒ = □ ϕδϕ + ∂μ(∂μδϕ) → δϕ
∂M

= 0, □ ϕ = 0

Tμν = ∂μϕ∂νϕ −
1
2

ημν∂αϕ∂αϕ → ED =
1
2

·ϕ2 +
1
2

(∇ϕ)2

ℒ =
1
2

∂μϕ∂μϕ − ∂μ(ϕ∂μϕ) → δ∂nϕ ∂M
= 0, □ ϕ = 0

EN =
1
2

·ϕ2 +
1
2

(∇ϕ)2 − ∂a(ϕ∂aϕ) = ED − ∂a(ϕ∂aϕ)



boundary terms in the action of GR
• Start with the Einstein-Hilbert Lagrangian


          


• Arbitrary variation gives                       


• Need boundary Lagrangian 


• for Dirichlet b.c. it is Gibbons-Hawking-York  


• what about different boundary conditions?                             

LEH = Rϵ

δLEH = Gμνδgμνϵ + d [(Kμνδqμν − 2δK) ϵΣ]
L = LEH + dℓ

ℓGHY = 2KϵΣ



GR with Neumann boundary conditions

•         


• the gravitational momentum    


• 


• Neumann b.c.   


• no boundary Lagrangian required             

δLEH ≈ d [(Kμνδqμν − 2δK) ϵΣ]
Π̃μν := q (Kμν − Kqμν)

δLEH ≈ d [δΠ̃μνqμνϵΣ]
δΠ̃μν = 0



York’s mixed boundary conditions
• have 6 conditions to fix  — can mix up Dirichlet and Neumann


• One particular choice of mixed b.c. that is geometrically motivated: Fixed 
conformal induced metric:     and the trace of extrinsic 
curvature        


• 


• boundary Lagrangian 

̂qμν := q−1/3qμν
δ ̂qμν = 0 = δK

δLEH ≈ d [−(Pμνδ ̂qμν +
4
3

δK)ϵT −
2
3

δ(Kδq)]
ℓY =

2
3

KϵΣ

[York ’86]



All these cases can be parametrized by a real parameter b








ℓb = bKϵΣ

L = LEH + dℓb

characterization of the observer, then a solution with di↵erent � would be on the same status as, say, a
Kerr solution with di↵erent values of the asymptotic lapse and shift, namely corresponding to boosted
or rotated black holes. Hence, within the context of thinking of the gauge degrees of freedom broken
by the boundary as physical, it is of interest to consider � as part of the phase space. Indeed, this
choice will be justified by the canonical analysis of the boundary terms done in Section 6.

A similar logic can be applied to the case of York’s mixed boundary conditions. Since they leave
the determinant of the induced metric free, it seems reasonable to us to take �� = 0 also in this case,
even though it is not required by the well-posedness of the initial value problem [27, 34]. Again, this
will be justified by the canonical analysis reported below. These choices are summarized in Table 2.

As before, we can treat all cases with a generic corner Lagrangian

`c = c�✏S , (2.16)

with c needing to be 2, 0 and 0 respectively for Dirichlet, mixed and Neumann boundary conditions.
The action principle with non-orthogonal corners thus reads

S =

Z
R✏ � b

Z ⌃1

⌃0

K✏⌃ + b

Z

T
K̄✏T + c

Z S1

S0

� ✏S . (2.17)

For Dirichlet boundary conditions, (2.14) and (2.17) are referred to as trace-K actions in the literature.
Accordingly, we will refer to them as b-generalized trace-K actions.

boundary conditions quantity fixed on boundary value of b quantity fixed at corner value of c
Dirichlet qµ⌫ 2 � 2
York (q̂µ⌫ , K) 2/3 � 0
Neumann ⇧̃µ⌫ 0 � 0

Table 2: Di↵erent boundary conditions and their boundary and corner Lagrangians.

3 Surface charges from covariant phase space

The first method we are going to use to compute the charges associated with the di↵erent boundary
conditions is the covariant phase space, in particular with the prescription of [16], which we briefly
review here. We use the notation of [15, 11], where � and I are respectively the exterior derivative and
internal product in field space. We denote ✓L the (integrand of the) symplectic potential associated
to a bulk Lagrangian L, which satisfies �L ⇡ d✓L.10 The quantities

⇥L :=

Z

⌃
✓L, ⌦L =

Z

⌃
!L, !L = �✓L, (3.1)

define respectively a (pre-)symplectic potential and (pre-)symplectic 2-form in the space of fields
associated with the hypersurface ⌃ and the Lagrangian L. The formalism can be used to compute
canonical generators of the infinitesimal symmetries �⇠ of L, by seeking functionals HL

⇠ that would

10If the latter equality is taken as the definition of the symplectic potential, it makes it ambiguous by the freedom
to add any exact 3-form. We fix this ambiguity by taking always the ‘bare’ choice, which can be justified defining the
symplectic potential by using the Anderson homotopy operator prescription, see [37, 38, 16].
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Dirichlet (b=2)    


York (b=2/3)       


Neumann (b=0) 

qBY
ξ = − 2∫S

nμξν (K̄μν − q̄μνK̄) ϵS

qY
ξ = − 2∫S

nμξν (K̄μν −
1
3

q̄μνK̄) ϵS

qN
ξ = − 2∫S

nμξνK̄μνϵS

[Brown, York ’93]

[GO, Speziale ’21]

Noether charges for different boundary conditions
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qY
ξ = − 2∫S

nμξν (K̄μν −
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q̄μνK̄) ϵS

qN
ξ = − 2∫S

nμξνK̄μνϵS

[Brown, York ’93]

[GO, Speziale ’21]

Noether charges for different boundary conditions

these charges are physically distinct because they correspond to canonical generators for 
different ways of making the system conservative



null boundaries

• the relation between different charges for different boundary conditions 
becomes clearer in the case of null boundaries 




‣ known constraint-free data


‣ don’t have to restrict to conservative b.c.


‣ leaky b.c. not ambiguous

null boundaries
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‣ known constraint-free data


‣ don’t have to restrict to conservative b.c.


‣ leaky b.c. not ambiguous
Lehner, Myers, Poisson, Sorkin ’16

Parattu, Chakraborty, Majhi, Padmanabhan ’16

     Donnay, Giribet, González, Pino ’16

De Lorenzo, Perez ’17

Hopfmuller, Freidel ‘18

Chandrasekaran, Flanagan, Prabhu ’18

Oliveri, Speziale ’19

Donnay, Marteau ’19

Freidel, Oliveri, Pranzetti, Speziale ’21

Chandrasekaran, Flanagan, Shehzad, Speranza ’22

….

null boundaries



• canonical charges by Chandrasekaran, Flanagan, Prabhu ’18 conserved on 
non-expanding horizons defined with Dirichlet polarization


• can use an analog of York’s polarization on a null boundary — nice 
geometric propetries


• using this polarization leads to charges conserved both on NEH and on 
minkowski lightcones


• might have interesting implications for dynamical processes [Rignon-Bret ‘23]

[Simone’s talk on Friday]

[GO, Rignon-Bret, Speziale WIP]

null boundaries


