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the role of boundary conditions

e Gravitational radiation makes the definition of energy ambiguous

* This ambiguity is commonly fixed by imposing Dirichlet b.c.
e Asymptotically flat — ADM, BMS

¢ Quasilocal — BY ZO/_

* Analogy with thermodynamics:
® isothermal — internal energy a
® adiabatic — free energy : _—

* How about gravity? What happens to energy it we use boundary conditions
different than Dirichlet?
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— J.+ da conserved as well




Noether's theorem

if the Lagrangian has a continuous symmetry, then there is a current
which is conserved on-shell.

oL=dY, = dj.~0, j.:=10-Y, dO:=oL
Je = Ce+dg,

= constraint (global charge) + boundary term (surface charge)




Noether's theorem

global example:

Poincaré invariance: conserved energy-momentum tensor

a—

gauge version:

local diffeo invariance: conservation of surface charges




general relativity

Einstein-Hilbert: L = Re
infinitesimal continuous symmetry: 6.8, = £:8,, = 0L = di.L

Noether current: Je=10 - Y. =1L + dq,

jCf — G,’ff” _ VDV[/"cf”]

1
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general relativity

Einstein-Hilbert: L = Re
infinitesimal continuous symmetry: 6.8, = £:8,, = 0L = di.L

Noether current;: ]5 - 159 — Yf — lgE + dqé

jg& — G,/ffy — Vyv[//tgld tor Kerr: L 9o, = aM
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scalar field with Neumann boundary conditions

e Consider the scalar field Lagrangian &£ = —6 DO P

® spacetime translation symmetry: x* — x* + €, 6.4 = —€"0, ¢,

o 0L =[]¢o¢ +0,0'0¢p) — ¢ =0, [J¢ =0 Dirichletb.c.,

I o DaM I 12 I 2
T,ul/ = a,u¢ay¢ o Enﬂyaa¢a ¢ — L7 = _¢ + 5(V¢)

e Neumann b.c.: & = —8 qb0”¢ 0 (453”@ —

B 5452 + 5( v¢>2 — 0,(p0°}) = EP = 0,(¢0"¢)

aMzo’ ¢ =0



boundary terms in the action of GR

e Start with the Einstein-Hilbert Lagrangian
L1 = Re

« Arbitrary variation gives SL7 = G,08"e+d (Kﬂyéq”” — 20K ) 62]

e Need boundary Lagrangian L = L + d¢
o for Dirichlet b.c. it is Gibbons-Hawking-York #¢"" = 2Kes

e what about different boundary conditions?



GR with Neumann boundary conditions
o SLEH v g [(Kwéq/“’ - 25K ) 62]

e the gravitational momentum fIW = \/5 (KW — Kqﬂy)

° 5LEH ~ d léﬁuyqﬂyeZ]

e Neumann b.c. 5ﬁw = ()

® no boundary Lagrangian requirea



York's mixed boundary conditions

* have 6 conditions to fix — can mix up Dirichlet and Neumann

* One particular choice of mixed b.c. that is geometrically motivated: Fixed

—1/3

conformal induced metric: g, := ¢~ "q,, and the trace of extrinsic

curvature oq,, = 0 = 6K

SL*" ~ d |—(P*6G., + iSK)e — 35(1(5 )
o ~ qlm/ 3 T 3 q

2
e boundary Lagrangian #* = §K€2



All these cases can be parametrized by a real parameter b
L =LY+ dr°

boundary conditions | quantity fized on boundary | value of b
Dirichlet Qv 2
York (G, K) 2/3
Neumann TTHv 0




Noether charges for different boundary conditions

Dirichlet (b=2) @' = — ZJ nHEY (KW -q,,K ) €

S
York (b=2/3 Y=—2| n*&" (K L K
ork (b=2/3) Q§ — n Uv 3q,m/ €s
S
_ N __ 178 7
Neumann (b=0) ;" = — ZJ n*c'K €
S
boundary conditions | quantity held fixred | value of b | quasi-local energy | Kerr (renormalized)
Dirichlet quv 2 k M
York (G, K) 2/3 k—2K/3 2M /3
Neumann I1+ 0 k— K M/?2




Noether charges for different boundary conditions

Dirichlet (b=2) q?Y = — J nt&" (KW — Q_VWIZ) €q
S

_ |
York (b=2/3) qg . ZJ nt&r (K/w — EQWK) €
S

Neumann (b=0) q? = — ZJ n”f”KWES

S
boundary conditions | quantity held fixred | value of b | quasi-local energy | Kerr (renormalized)
Dirichlet quv 2 k M
York (G, K) 2/3 k—2K/3 2M /3
Neumann [1# 0 k— K M/?2

these charges are physically distinct because they correspond to canonical generators for
different ways of making the system conservative



null boundaries

e the relation between different charges tor ditterent boundary conditions
becomes clearer in the case of null boundaries
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null boundaries

canonical charges by Chandrasekaran, Flanagan, Prabhu 18 conserved on
non-expanding horizons defined with Dirichlet polarization

can use an analog of York's polarization on a null boundary — nice
geometric propetries

using this polarization leads to charges conserved both on NEH and on
minkowski lightcones

might have interesting implications for dynamical processes



