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Introduction

Einstein’s General Relativity (GR) represents current description for
gravitational interaction. Given by classical Einstein-Hilbert action:

IEH =
1

16πG

∫
M

dDx
√
|g|LEH , LEH = R .

It is not known how to consistently quantize GR → natural to search for a
theory of Quantum Gravity.

Although promising candidates exist (String Theory, Loop Quantum Gravity...),
Quantum Gravity remains yet to be fully understood.
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Introduction

With current gravitational-wave detectors LIGO/VIRGO, future interferometer
LISA and EHT collaboration: about to test GR with unprecedented
precision!

=⇒ We must be ready for possible deviations measured in the coming
years.

These would occur in regime in which gravity is strong enough to overpass GR’s
validity range, but not enough to need a full Quantum Gravity description.

What could we do? We hope to study these phenomena by adding suitable
corrections to GR...

But which ones?
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Introduction

We may adopt an EFT approach: Add to EH action all possible terms
compatible with existing symmetries (diffeomorphisms).

EH action corrected by infinite expansion in powers of curvature (String
Theory [e.g.Callan, Friedan, Martinec, Perry ’85; Gross, Witten ’86; Bergshoeff, de
Roo ’89] ).

If Rabc
d stands for Riemann curvature tensor and Rac = Rabcd

b for Ricci tensor,
first-order corrections would be:

R2 , RabR
ab , RabcdR

abcd .
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Introduction

Definition (Higher-curvature gravity)
A higher-curvature (or higher-order) gravity is any theory featuring higher-
curvature terms like R2, RabR

ab...

Most general higher-order gravity to quadratic order in curvature:

L = R+ `2(α1R
2 + α2RabR

ab + α3RabcdR
abcd) ,

` being length scale and αi dimensionless couplings. Another example of
higher-order gravity, now with cubic terms:

L = R+ `4(β1R
3 + β2RabcdR

acRbd) .

In this presentation: metric formalism and Levi-Civita connection. However,
there are other possibilities, like metric-affine theories [e.g.Borunda, Janssen,
Bastero-Gil ’08; Olmo ’11].
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Examples of higher-order gravities

Among the myriads of higher-order gravities, the literature has mainly focused
on two classes of theories:

Lanczos-Lovelock theories [Lanczos ’32,’38; Lovelock ’70,’71].

LLL = R+

[D/2]∑
k=2

`2k−2αk
(2k)!

2k
Ra1a2

[b1b2
. . . R

a2k−1a2k

b2k−1b2k]
,

Case up to k = 2: Gauss-Bonnet gravity:

LGB = R+ α`2(R2 − 4RabR
ab +RabcdR

abcd) .

f(R) theories [Buchdahl ’70].

Lf(R) = R+ f(R) ,

for an arbitrary function f . If f(R) = α`2R2, we obtain Starobinsky’s model
[Starobinsky ’80].
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Examples of higher-order gravities

Lanczos-Lovelock theories:
4 Most general theory with second-order equations of motion (eom).

6 The theory reduces to GR in four dimensions.

f(R) theories:
4 Eom are fourth-order, but manageable [De Felice, Tsujikawa ’10].

4 Non-trivial in four dimensions.

6 They are equivalent to Brans-Dicke theories −→ do not introduce new
gravitational phenomena.

=⇒ Find a particular class of higher-order gravities:
1 Amenable to computations (second-order or less eom under certain cir-

cumstances).
2 Non-trivial in four dimensions.
3 Generic enough so as to capture typical features introduced by higher-order

terms.
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Towards Generalized Quasitopological Gravities

Search higher-order gravities with second-order eom on single-function static
and spherically symmetric (SSS) solutions:

ds2f = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 .

If f(r) = 1− 2M/r, we recover Schwarzschild solution.

Definition
A theory is a Generalized Quasitopological Gravity (GQG) if it admits single-
function SSS solutions whose eom are second order. [Oliva, Ray ’10; Myers,
Robinson ’10; Bueno, Cano ’16; Hennigar, Kubizňák, Mann ’17].

GR and Lovelock gravities are GQGs. No non-trivial f(R) is a GQG.
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Properties of GQGs

4 The eom for f(r) is at most second order.

4 There are non-trivial GQGs in all dimensions D ≥ 4; e.g., in D = 4:

L = R+ α`4P ,

P = 12R c d
a b R

e f
c d R

a b
e f +Rab

cdRcd
efRef

ab − 12RabcdR
acRbd + 8Rb

aR
c
bR

a
c ,

defines a GQG (Einsteinian Cubic Gravity) [Bueno, Cano ’16].

Linearized eom on max. symmetric backgrounds are second-order [Bueno,
Cano ’17].

Black hole thermodynamics can be computed analytically [e.g.Myers, Robin-
son ’10; Bueno, Cano ’16,’17; Hennigar, Kubizňák, Mann ’17].

4 Any purely gravitational higher-order theory can be mapped via perturbative
field redefinitions to a GQG [Bueno, Cano, Moreno, ÁM ’19.]
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Classification of GQGs

Since GQGs form a basis of space effective gravitational theories, interesting to
find explicit Lagrangian of all existing GQGs.

This remains as outstanding open problem in literature. However, we have solved
the problem in the class of inequivalent GQGs.

ds2f = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 .

Definition
Two GQGs are inequivalent if the eoms for f(r) are linearly independent.
Otherwise, they are equivalent.

In our work [Moreno, ÁM ’23], we have found the explicit Lagrangians of all
inequivalent GQGs in D ≥ 4. In this presentation, just show results in D = 4.
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inequivalent GQGs in D ≥ 4. In this presentation, just show results in D = 4.



All inequivalent four-dimensional GQGs

Let Wabcd be Weyl tensor, Zab = Rab − 1
4gabR, πl = mod(l, 2) and:

Wl =

(
1

3
WabcdW

abcd

) l−πl
2
(

1− πl

3
WabcdW

abcd +
2πl

3
WabcdW

cdefWef
ab

)
.

Theorem (Moreno, Murcia ’23)

The most general inequivalent GQG in D = 4 is

L = R+

∞∑
n=3

αn`
2n−2S(n) ,

where ` is a length scale, αn arbitrary dimensionless constants and

S(n) = Rn − 6n(n− 1)Rn−2ZabZ
ab + 18n(n− 1)(n− 2)Rn−3ZabZcdWabcd

+

n−2∑
l=0

(−3)l+2(l + 1)(3l + 4)n!

2(l + 2)!(n− l − 2)!
Rn−l−4Wl

(
R2 − 48(n− l − 2)(n− l − 3)

(l + 1)(3l + 4)
ZabZ

ab

)
.



Explicit expressions of generic GQGs

Lowest-order non-trivial GQGs for D = 4:

S(3) = R3 + 18RWabcdW
abcd − 36RZa

b Z
b
a − 126W cd

ab W ef
cd W ab

ef + 108Za
b Z

c
dW

bd
ac ,

S(4) = R4 + 36R2WabcdW
abcd − 72R2Za

b Z
b
a − 504RW cd

ab W ef
cd W ab

ef

+ 432RZa
b Z

c
dW

bd
ac + 135

(
WabcdW

abcd
)2
− 216WabcdW

abcdZe
fZ

f
e ,

S(5) = R5 + 60R3WabcdW
abcd − 120R3Za

b Z
b
a − 1260R2W cd

ab W ef
cd W ab

ef

+ 1080R2Za
b Z

c
dW

bd
ac + 675R

(
WabcdW

abcd
)2
− 1080RWabcdW

abcdZe
fZ

f
e

− 1404WabcdW
abcdW gh

ef W ij
gh W ef

ij + 2160Za
b Z

b
aW

ef
cd W gh

ef W cd
gh ,



Conclusions

GQGs are higher-curvature extensions of Einstein’s gravity:

1 Admit simple SSS solutions.
2 Non-trivial in four dimensions.
3 Span the space of effective theories of gravity.

We found explicit Lagrangians of all inequivalent GQGs in D ≥ 4.

1 In D = 4, there exists single inequivalent GQG at each
curvature order n, finding explicit covariant form.

¡Muchas gracias!
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Classification of GQGs in D ≥ 5

Let us start by exploring the case D ≥ 5.

ds2f = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 .

Any quantity evaluated on previous single-function SSS metric is said to be
on-shell. Otherwise, off-shell.

Throughout presentation: Z(n) is order-n Quasitopological Gravity, S(n,j) is an
order-n proper GQG, with j = 2, . . . , n− 1 and n ≥ 1.

The on-shell expression of all n− 1 inequivalent GQGs in D ≥ 5 is known
[Bueno, Cano, Hennigar, Lu, Moreno ’22; Moreno, ÁM ’23]:

Z(n)|f =
1

rD−2

d

dr

[
rD−1 ((2n−D)τ(n,0) − 2nτ(n,1)

)]
,

S(n,j)|f =
1

rD−2

d

dr

[
rD−1

((
2− D

2n
(j + 1)

)
τ(n,0) − (j + 1)τ(n,j) + (j − 1)τ(n,j+1)

)]
,

where τ(n,k) = (−f ′/2)k(1− f)n−krk−2n.



Classification of GQGs in D ≥ 5

Let us start by exploring the case D ≥ 5.

ds2f = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 .

Any quantity evaluated on previous single-function SSS metric is said to be
on-shell. Otherwise, off-shell.

Throughout presentation: Z(n) is order-n Quasitopological Gravity, S(n,j) is an
order-n proper GQG, with j = 2, . . . , n− 1 and n ≥ 1.

The on-shell expression of all n− 1 inequivalent GQGs in D ≥ 5 is known
[Bueno, Cano, Hennigar, Lu, Moreno ’22; Moreno, ÁM ’23]:

Z(n)|f =
1

rD−2

d

dr

[
rD−1 ((2n−D)τ(n,0) − 2nτ(n,1)

)]
,

S(n,j)|f =
1

rD−2

d

dr

[
rD−1

((
2− D

2n
(j + 1)

)
τ(n,0) − (j + 1)τ(n,j) + (j − 1)τ(n,j+1)

)]
,

where τ(n,k) = (−f ′/2)k(1− f)n−krk−2n.



Classification of GQGs in D ≥ 5

Let us start by exploring the case D ≥ 5.

ds2f = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 .

Any quantity evaluated on previous single-function SSS metric is said to be
on-shell. Otherwise, off-shell.

Throughout presentation: Z(n) is order-n Quasitopological Gravity, S(n,j) is an
order-n proper GQG, with j = 2, . . . , n− 1 and n ≥ 1.

The on-shell expression of all n− 1 inequivalent GQGs in D ≥ 5 is known
[Bueno, Cano, Hennigar, Lu, Moreno ’22; Moreno, ÁM ’23]:

Z(n)|f =
1

rD−2

d

dr

[
rD−1 ((2n−D)τ(n,0) − 2nτ(n,1)

)]
,

S(n,j)|f =
1

rD−2

d

dr

[
rD−1

((
2− D

2n
(j + 1)

)
τ(n,0) − (j + 1)τ(n,j) + (j − 1)τ(n,j+1)

)]
,

where τ(n,k) = (−f ′/2)k(1− f)n−krk−2n.



Classification of GQGs in D ≥ 5

Since GQGs in D ≥ 5 are fully characterized on-shell...→ what if we develop a
dictionary that allows us to uplift on-shell expressions to off-shell (covariant)
expressions?

For example, let the following on-shell expression in D = 5:

O(1) =
6− 6f − 6rf ′ − r2f ′′

r2
.

Can we find an appropriate contraction of curvature tensors R(1) such that
R(1)|f = O(1)? In this case, yes: R(1) = R.

In more general cases, how to map on-shell quantity to fully covariant
expression with curvature tensors?
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On-shell to off-shell dictionary

ds2f = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 .

Consider orthogonal projectors:

T a
b = δat δ

t
b + δar δ

r
b , σa

b = gab − T a
b .

It turns out Weyl tensor Wabc
d, traceless Ricci tensor Zab = Rab − R

Dgab:

W ab
cd

∣∣
f

= Ω(r)

[
(D − 2)(D − 3)

2
T

[a
[c T

b]
d] − (D − 3)T

[a
[c σ

b]
d] + σ

[a
[cσ

b]
d]

]
,

Za
b |f = Θ(r)

[
−D − 2

2
T a
b + σa

b

]
,

where

Ω(r) =
4− 4f(r) + 4rf ′(r)− 2r2f ′′(r)

(D − 1)(D − 2)r2
,

Θ(r) =
2(D − 3)(1− f(r)) + (D − 4)rf ′(r) + r2f ′′(r)

Dr2
.
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On-shell to off-shell dictionary

If R|f = P(r), since P,Ω and Θ are independent, an on-shell quantity:

PqΩmΘp ,

must come from a contraction of m Weyl tensors, p traceless Ricci tensors and
q Ricci scalars. However, which contraction?

Proposition
Any contraction (WmZpRq)i of m Weyl tensors, p traceless Ricci tensors and q
Ricci scalars satisfies:

(WmZpRq)i = ciP
qΩmΘp ,

with ci ∈ R, depending on specific contraction.

For instance, this means that a contraction like WabcdW
cdefWefghW

ghab|f is
proportional to (WabcdW

abcd|f )2.

Goal: Finding an appropriate basis of low-order terms (i.e., low number of
curvature tensors) so that any contraction of curvature tensors may be
obtained by multiplying terms of this basis.
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On-shell to off-shell dictionary
Define:

W2 ≡
4

(D − 2)2(D − 1)(D − 3)
WabcdW

abcd , Z2 ≡
2

D(D − 2)
Za

b Z
b
a ,

W3 ≡
8

(D − 3)(D − 2)(2(2− (D − 3)2) + (D − 2)2(D − 3)2)
W cd

ab W ef
cd W ab

ef ,

Y3 ≡
8

D2(D − 2)(D − 3)
Za

b Z
c
dW

bd
ac ,

X3 ≡ −
8

(D − 1)2(D − 2)(D − 3)(D − 4)
Za

bWacdeW
bcde ,

Z3 ≡ −
4

D(D − 2)(D − 4)
Za

b Z
b
cZ

c
a ,

Y4 ≡ −
16

D2(D − 2)(D − 3)(D − 4)
Za

b ZacZdeW
bdce ,

X4 ≡ −
32

D(D − 1)2(D − 2)(D − 3)2(D − 4)
ZabWacbdW

cefgW d
efg .

It turns out that:
W2|f = Ω2 , Z2|f = Θ2 , W3|f = Ω3 , Y3|f = Θ2Ω ,

X3|f = Ω2Θ , Z3|f = Θ3 , Y4|f = Θ3Ω , X4|f = Ω3Θ .
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On-shell to off-shell dictionary

Define:

I(1)l = W
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2
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2
2 ((1− πl)X3 + πlX4) , I(4)l = Z

l−πl
2

2 ((1− πl)Y3 + πlY4) ,

with πl = mod(l, 2).

Dictionary:
On-shell Off-shell

Ω(r)l+2 −−−−−−−→ I(1)l

Θ(r)l+2 −−−−−−−→ I(2)l

Θ(r)Ω(r)l+2 −−−−−−−→ I(3)l

Ω(r)Θ(r)l+2 −−−−−−−→ I(4)l

P(r) −−−−−−−→ R .

The terms PpΩ, PpΘ and PpΘΩ alone cannot be translated into off-shell quantities.
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Uplift procedure

The process to map on-shell to off-shell is clear:

1 Start with known on-shell expressions.
2 Massage to express it in terms of P, Ω and Θ.
3 Apply the dictionary.

For instance, for quadratic Quasitopological Gravity:
1 First step:

Z(2)|f =
1

rD−2
d

dr

[(
1− f
r2

)n

rD−1
(

(4−D)(1− f)

r2
+

2f ′

r

)]
.

2 Second step:

Z(2)|f =
P2

D −D2
+

2D

D − 2
Θ2 − (D − 1)(D − 2)

4
Ω2 .

3 Third step (after rescaling Z(2) so that R2 is normalized to one):

Z(2) = R2 − 4RabR
ab +RabcdR

abcd .
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All inequivalent Quasitopological Gravities in D ≥ 5

Theorem
The unique inequivalent Quasitopological Gravity at each curvature order n ≥
3 for D ≥ 5 can be chosen to be

Z(n) = Rn +

n−2∑
l=0

Rn−l−2
(
γn,−2,lI(1)l + γn,l,−2I(2)l

)
+

n−3∑
l=0

Rn−l−3
(
γn,−1,lI(3)l + γn,l,−1I(4)l

)

+

n−4∑
l=0

n−l−4∑
p=0

γn,l,pR
n−l−p−4I(1)p I

(2)
l , n ≥ 3 ,

with constants γn,l,p only non-zero for l, p ≥ −2 and l+ p+ 4 ≤ n, in which case

γn,l,p =
n!(D(D(l − 2) + 4)(l + 1) + 4(D − 1)(Dl + 1)(p+ 2) + 4(D − 1)2(p+ 2)2)

22−l+p(D2 −D)−p−l−3(D − 2)l+2(l + 2)!(p+ 2)!(n− l − p− 4)!
.

For n = 1 and n = 2, we only have GR and Gauss-Bonnet.
It drastically simplifies previous expressions for Quasitopological Gravities.
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All inequivalent GQGs in D ≥ 5

Theorem
The n− 2 inequivalent proper GQGs at each curvature order n ≥ 3 with D ≥ 5
can be taken to be

S(n,j) = Rn +

n−2∑
l=0

Rn−l−2
(
σn,j,−2,lI(1)l + σn,j,l,−2I(2)l
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(2)
l , n ≥ 3 ,

with j = 2, . . . , n− 1 and σn,j,l,p given prescribed constants.

For n = 1 and n = 2, we only have GR and Gauss-Bonnet.

First classification in the literature of all inequivalent GQGs in D ≥ 5.
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GQGs in D = 4

Four-dimensional GQGs have to be studied separately: previous dictionary
does not apply.

Why? In D = 4, the Weyl W ab
cd and traceless Ricci Za

b read:

W ab
cd|f = Ω(r)

[
T

[a
[c T

b]
d] − T

[a
[c σ

b]
d] + σ

[a
[cσ

b]
d]

]
,

Za
b |f = Θ(r) [−T a

b + σa
b ] .

Define map f such that f(T a
b ) = σa

b and f(σa
b ) = T a

b . Then:

f(Wab
cd|f ) = Wab

cd|f , f(Za
b |f ) = −Za

b |f .

Every tensor Kab constructed with m Weyls and p traceless Riccis satisfies:

f(Ka
b |f ) = (−1)pKa

b |f .

Since Ka
b |f = s1T

a
b + s2σ

a
b , for p odd K

a
b |f is proportional to Za

b |f , so Ka
a |f = 0.

Conclusion: All contractions with odd numbers of Za
b vanish identically on

single-function SSS ansatz in D = 4.
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GQGs in D = 4

The four-dimensional dictionary will be much simpler!

Define:

W2 =
1

3
WabcdW

abcd , Z2 =
1

4
ZabZab ,

W3 =
2

3
WabcdW

cdefWef
ab , Y3 =

1

4
ZabZcdWacbd ,

I(1)l = W
l−πl

2
2 ((1− πl)W2 + πlW3) .

Dictionary:
On-shell Off-shell

Ω(r)l+2 −−−−−−−→ I(1)l

Θ(r)2l+2 −−−−−−−→ Z1+l
2

Ω(r)Θ(r)2l+2 −−−−−−−→ Zl
2Y3 ,

P(r) −−−−−−−→ R ,

Observe that P qΩ and P qΩsΘ2l+1 alone cannot be translated into off-shell quantities.
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GQGs in D = 4

Previous restricted dictionary will reduce number of GQGs at each order.

Consider generic on-shell expression satisfying GQG condition in D = 4:

Fn = αnZ(n)|f +

n−1∑
j=2

βn,jS(n,j)|f , n ≥ 3 ,

for arbitrary coefficients αn, βn,j .

Fn may be uplifted to off-shell density if and only if no terms of the form
PmΩnΘ2k+1 appear.

Result: It happens if and only if αn = βn,j = 0 , j = 2, . . . , n− 2. In fact:

Fn = S(n,n−1)|f =
3

12n
(P− 3Ω)n−2

(
−2P2 − 6(n− 2)PΩ

+3(n− 1)(16nΘ2 + 3(2− 3n)Ω2)
)
,
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Result: It happens if and only if αn = βn,j = 0 , j = 2, . . . , n− 2. In fact:

Fn = S(n,n−1)|f =
3

12n
(P− 3Ω)n−2

(
−2P2 − 6(n− 2)PΩ

+3(n− 1)(16nΘ2 + 3(2− 3n)Ω2)
)
,



All GQGs in D = 4

Theorem

There exists a unique inequivalent GQG at each curvature order n ≥ 3 in D = 4.
It can be taken to be

S(4)(n) = Rn + γ1R
n−2Z2 + γ2R

n−3Y3 +

n−2∑
l=0

λ
(1)
l Rn−l−4I(1)l

(
R2 + λ

(2)
l Z2

)
,

where

γ1 = −24n(n− 1) , γ2 = −3(n− 2)γ1 , λ
(1)
l =

(−3)l+2(l + 1)(3l + 4)n!

2(l + 2)!(n− l − 2)!
,

λ
(2)
l = −48(n− l − 2)(n− l − 3)

(l + 1)(3l + 4)
.

For n = 1 we just have GR, for n = 2 there is no non-trivial GQG.

First proof of fact that there is one and only one inequivalent GQG at
each order in D = 4.
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Examples of GQGs

There are of course non-trivial examples of GQGs.

Cubic Quasitopological Gravity [Oliva, Ray ’10; Myers, Robinson ’10]:

Z(3) =Ra
b
c
dRb

e
d
fRe

a
f
c +

1

(2D − 3)(D − 4)

[
3(3D − 8)

8
RabcdR

abcdR

−3(3D − 4)

2
Ra

cRc
aR− 3(D − 2)RacbdR

acb
eR

de + 3DRacbdR
abRcd

+6(D − 2)Ra
cRc

bRb
a +

3D

8
R3

]
.

It defines a Quasitopological Gravity for D ≥ 5 (algebraic eom for f).

No Quasitopological Gravity exists for D = 4 (apart from GR).
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Examples of GQGs

Cubic proper GQG [Bueno, Cano ’16, Hennigar, Kubizňák, Mann ’17]:

S(3) = 14R c d
a b R

e f
c d R

a b
e f + 2Rcd

abR
ab
ceR

e
d −

(38− 29D + 4D2)

4(D − 2)(2D − 1)
RabcdR

abcdR

− 2(4D2 + 9D − 30)

(D − 2)(2D − 1)
RabcdR

acRbd − 4(2D2 − 35D + 66)

3(D − 2)(2D − 1)
Rb

aR
c
bR

a
c

+
(4D2 − 21D + 34)

(D − 2)(2D − 1)
RabR

abR− (4D2 − 13D + 30)

12(D − 2)(2D − 1)
R3 .

It is a non-trivial GQG for every D ≥ 4 (second-order eom for f).

In D = 4,
by combining with cubic Lovelock density:

P = 12R c d
a b R

e f
c d R

a b
e f +Rab

cdRcd
efRef

ab − 12RabcdR
acRbd + 8Rb

aR
c
bR

a
c ,

This is Einsteinian Cubic Gravity (ECG), first proper GQG identified.



Examples of GQGs

Cubic proper GQG [Bueno, Cano ’16, Hennigar, Kubizňák, Mann ’17]:

S(3) = 14R c d
a b R

e f
c d R

a b
e f + 2Rcd

abR
ab
ceR

e
d −

(38− 29D + 4D2)

4(D − 2)(2D − 1)
RabcdR

abcdR

− 2(4D2 + 9D − 30)

(D − 2)(2D − 1)
RabcdR

acRbd − 4(2D2 − 35D + 66)

3(D − 2)(2D − 1)
Rb

aR
c
bR

a
c

+
(4D2 − 21D + 34)

(D − 2)(2D − 1)
RabR

abR− (4D2 − 13D + 30)

12(D − 2)(2D − 1)
R3 .

It is a non-trivial GQG for every D ≥ 4 (second-order eom for f). In D = 4,
by combining with cubic Lovelock density:

P = 12R c d
a b R

e f
c d R

a b
e f +Rab

cdRcd
efRef

ab − 12RabcdR
acRbd + 8Rb

aR
c
bR

a
c ,

This is Einsteinian Cubic Gravity (ECG), first proper GQG identified.


	Introduction

