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Introduction

Einstein's General Relativity (GR) represents current description for
gravitational interaction. Given by classical Einstein-Hilbert action:

1
Igpy = —— [ dPz+/|g|L Lrgn=R.
E Tl l9|Cen, Len
It is not known how to consistently quantize GR — natural to search for a
theory of Quantum Gravity.

Although promising candidates exist (String Theory, Loop Quantum Gravity...),
Quantum Gravity remains yet to be fully understood.
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With current gravitational-wave detectors LIGO/VIRGO, future interferometer
LISA and EHT collaboration: about to test GR with unprecedented
precision!=—- We must be ready for possible deviations measured in the coming
years.

These would occur in regime in which gravity is strong enough to overpass GR's
validity range, but not enough to need a full Quantum Gravity description.

What could we do? We hope to study these phenomena by adding suitable
corrections to GR...

But which ones?



Introduction

We may adopt an EFT approach: Add to EH action all possible terms
compatible with existing symmetries (diffeomorphisms).



Introduction

We may adopt an EFT approach: Add to EH action all possible terms
compatible with existing symmetries (diffeomorphisms).

EH action corrected by infinite expansion in powers of curvature (String

Theory [e.g. Callan, Friedan, Martinec, Perry '85; Gross, Witten '86; Bergshoeff, de
Roo '89] ).



Introduction

We may adopt an EFT approach: Add to EH action all possible terms
compatible with existing symmetries (diffeomorphisms).

EH action corrected by infinite expansion in powers of curvature (String
Theory [e.g. Callan, Friedan, Martinec, Perry '85; Gross, Witten '86; Bergshoeff, de
Roo '89] ).

If Rape? stands for Riemann curvature tensor and R,. = Rapeq” for Ricci tensor,
first-order corrections would be:

R2 ) RabRab ) RabcdRade .
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Definition (Higher-curvature gravity)

A higher-curvature (or higher-order) gravity is any theory featuring higher-
curvature terms like R?, Ry R...

Most general higher-order gravity to quadratic order in curvature:
L =R+ (a1 R? + asRwR™ + asRapea RY),

¢ being length scale and «; dimensionless couplings. Another example of
higher-order gravity, now with cubic terms:

L =R+ (*(B1R® + BaRapca R*“R™) .
In this presentation: metric formalism and Levi-Civita connection. However,

there are other possibilities, like metric-affine theories [e.g. Borunda, Janssen,
Bastero-Gil '08; Olmo '11].
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Examples of higher-order gravities

Among the myriads of higher-order gravities, the literature has mainly focused
on two classes of theories:

@ Lanczos-Lovelock theories [Lanczos '32,’38; Lovelock '70,'71].

[D/2] (2k)!
2k—2 ‘ paa a2k—10
Lo =R 3 Ot SRR R
k=2

Case up to k = 2: Gauss-Bonnet gravity:

L = R+ al*(R? — 4Ry, R™ + RapeqR*?).

o f(R) theories [Buchdahl '70].
Lyr) =R+ f(R),

for an arbitrary function f. If f(R) = al?> R?, we obtain Starobinsky’s model
[Starobinsky "80].
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@ Lanczos-Lovelock theories:
v/ Most general theory with second-order equations of motion (eom).
® The theory reduces to GR in four dimensions.
o f(R) theories:
v/ Eom are fourth-order, but manageable [De Felice, Tsujikawa '10].
v/ Non-trivial in four dimensions.
® They are equivalent to Brans-Dicke theories — do not introduce new
gravitational phenomena.

= Find a particular class of higher-order gravities:
© Amenable to computations (second-order or less eom under certain cir-
cumstances).
@ Non-trivial in four dimensions.

@ Generic enough so as to capture typical features introduced by higher-order
terms.



Towards Generalized Quasitopological Gravities

Search higher-order gravities with second-order eom on single-function static
and spherically symmetric (SSS) solutions:

1
fr)

If f(r) =1—2M/r, we recover Schwarzschild solution.

dsfc —f(r)dt? + dr? 4+ r2dQ3,_,.



Towards Generalized Quasitopological Gravities

Search higher-order gravities with second-order eom on single-function static
and spherically symmetric (SSS) solutions:

1
fr)

If f(r) =1—2M/r, we recover Schwarzschild solution.

ds?c = —f(r)dt® + dr? 4+ r2dQ3,_,.

Definition

A theory is a Generalized Quasitopological Gravity (GQG) if it admits single-
function SSS solutions whose eom are second order. [Oliva, Ray '10; Myers,
Robinson '10; Bueno, Cano '16; Hennigar, Kubiziiak, Mann '17].




Towards Generalized Quasitopological Gravities

Search higher-order gravities with second-order eom on single-function static
and spherically symmetric (SSS) solutions:

1
fr)

If f(r) =1—2M/r, we recover Schwarzschild solution.

ds?c = —f(r)dt® + dr? 4+ r2dQ3,_,.

Definition

A theory is a Generalized Quasitopological Gravity (GQG) if it admits single-
function SSS solutions whose eom are second order. [Oliva, Ray '10; Myers,
Robinson '10; Bueno, Cano '16; Hennigar, Kubiziiak, Mann '17].

GR and Lovelock gravities are GQGs. No non-trivial f(R) is a GQG.
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The eom for f(r) is at most second order.

There are non-trivial GQGs in all dimensions D > 4; e.g., in D = 4:
L=R+al'P,

P =12R YRS R P + Ray™ Reg™ Rey® — 12Rapea R R + S8R RERY
defines a GQG (Einsteinian Cubic Gravity) [Bueno, Cano '16].

Linearized eom on max. symmetric backgrounds are second-order [Bueno,
Cano '17].

Black hole thermodynamics can be computed analytically [e.g. Myers, Robin-
son '10; Bueno, Cano '16,’17; Hennigar, Kubiziiak, Mann "17].

Any purely gravitational higher-order theory can be mapped via perturbative
field redefinitions to a GQG [Bueno, Cano, Moreno, AM '19.]
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Classification of GQGs

Since GQGs form a basis of space effective gravitational theories, interesting to
find explicit Lagrangian of all existing GQGs.

This remains as outstanding open problem in literature. However, we have solved
the problem in the class of inequivalent GQGs.

b

ds7 = —f(r)dt* + o

dr? +1%d0%,_, .

Definition

Two GQGs are inequivalent if the eoms for f(r) are linearly independent.
Otherwise, they are equivalent.

In our work [Moreno, AM '23], we have found the explicit Lagrangians of all
inequivalent GQGs in D > 4. In this presentation, just show results in D = 4.



All inequivalent four-dimensional GQGs

Let Wapea be Weyl tensor, Zap = Rap — LgapR, m = mod(l,2) and:

1—m
1 2 (1 - abce 2 cae @
Wl = <§Wabchade> (Tﬂ-lWabch bed + %Wabcdw ¢ fWEf b> .

Theorem (Moreno, Murcia '23)

The most general inequivalent GRG in D = 4 is

o
L=R+> a8,
n=3

where ¢ is a length scale, «, arbitrary dimensionless constants and

Sy = R" —6n(n— 1)R" 22,2 +18n(n — 1)(n — 2)R" 32 Z° W 1ca
n)

2 (=) + DB+ 0! iy 48(n—1—2)(n—1—3) a
+Z 200+ 2)!/(n — 1 — 2)! -R" WZ(R_ I+ 1)(3l+4) Z‘”’Zb)‘




Explicit expressions of generic GQGs

Lowest-order non-trivial GQGs for D = 4:

S(s) = R® + 18 RWopea W™ — 36 RZ{ Z — 126W,, W, T W, * + 10823 Z5W,. "7 ,

Sy = R* + 36 R WapedW ™ — T2R*Z 28 — 504RW,,, “*W,, T W, ;**
2
+ 432RZ5 Z§Wo " + 135 (WaeaW ™) = 216Wanea W™ 25 21,

S(s) = R® + 60R*Wapea W — 120R* Z{ Z) — 1260R* W, W, T W ;
2 7a rzc bd abed 2 abed rze 7 f
+ 1080R*Z ZgW,."* + 6T5R (Wabch ) — 1080 RW apea W >4 25 71
— 1404Wapea WU W, S W, W, 4+ 216025 ZoW W, 9" W,
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Conclusions

@ GQGs are higher-curvature extensions of Einstein's gravity:

@ Admit simple SSS solutions.
@ Non-trivial in four dimensions.
© Span the space of effective theories of gravity.

@ We found explicit Lagrangians of all inequivalent GQGs in D > 4.

@ In D =4, there exists single inequivalent GQG at each
curvature order n, finding explicit covariant form.

iMuchas gracias!
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Classification of GQGsin D > 5

Let us start by exploring the case D > 5.

1
f(r)dt2 + _f(r) dr? + TZdQQD_Q

Any quantity evaluated on previous single-function SSS metric is said to be
on-shell. Otherwise, off-shell.

2
dsy

Throughout presentation: Z,, is order-n Quasitopological Gravity, S, ;) Is an
order-n proper GQG, with j=2,....n—1andn > 1.

The on-shell expression of all n — 1 inequivalent GQGs in D > 5 is known
[Bueno, Cano, Hennigar, Lu, Moreno '22; Moreno, AM '23]:

1 d
rD=2dpr

1 d _ D . . .
Stnpls = D2gq, [TD ! ((2 - %(J + 1)) Tn,0) — (J + D)T(n,gy + (5 — 1)T(n,j+1)>] ,

where 7, 1y = (—f/2)F(1 — f)n—krk=2n,

Zmyly = [TD_I ((2n — D)7(n0) — 2717(”,1))] ,
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Classification of GQGsin D > 5

Since GQGs in D > 5 are fully characterized on-shell...— what if we develop a
dictionary that allows us to uplift on-shell expressions to off-shell (covariant)
expressions?

For example, let the following on-shell expression in D = 5:

6 —6f—6rf —r2f"
O = 2 :

r

Can we find an appropriate contraction of curvature tensors R ;) such that
Ryly = Ony? In this case, yes: Ry = R.

In more general cases, how to map on-shell quantity to fully covariant
expression with curvature tensors?
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On-shell to off-shell dictionary

1

dsfc = —f(r)dt* + )

dr? + T2dQQD_2 .
Consider orthogonal projectors:

Ty = 608, + 000}, of = gf — Ti.

It turns out Weyl tensor W,;.%, traceless Ricci tensor Z,, = Ry — %gab:

b (D =2)(D =3), [ab] la 8 |, [a b
we Cd’f =Q(r) {—2 T, Ty —(D=3)T og+0.04]

a D -2 a a

21, = 00) |- 215 4

where
_A—Af(r) +4Arf(r) =207 f"(r)
Ur) = (D - 1)(D 2 ’

_2(D=3)(A = f(r) + (D —=4)rf'(r) +r2f"(r)
O(r) = D2 .
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On-shell to off-shell dictionary

If Ry =P(r), since P,Q and © are independent, an on-shell quantity:
PIQmOP,

must come from a contraction of m Weyl tensors, p traceless Ricci tensors and
q Ricci scalars. However, which contraction?

Proposition

Any contraction (W™ZPR?); of m Weyl tensors, p traceless Ricci tensors and q
Ricci scalars satisfies:
(WmZPRY); = ¢;PIQMOP

with ¢; € R, depending on specific contraction.

For instance, this means that a contraction like Wepeg W4 W, £, W9he0| 4 is
proportional to (WpeaW b ;)2

Goal: Finding an appropriate basis of low-order terms (i.e., low number of
curvature tensors) so that any contraction of curvature tensors may be
obtained by multiplying terms of this basis.
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On-shell to off-shell dictionary

Define:
Wo = 4 Wdeabcd 7 :#Zazb
T DD=-22Db-1)(D-3) T DD —2)
8 cd ef ab
W3 =
= Do) D222 (D=3 + (D =22 37 @ Vea Wer
8 a ryc bd
Y3 = VAW
3 D2(D—2)(D—3) b dWac )
- 3 a bede
X5 =T D 12D —2) D )0 42 Vet
4 a r7b 7c
Is=——————— 74 7.7,
3 D(D—2)(D—4) b4&cta s
= _ 16 a bdce
=T 9D -3y —4) e W
X4 =_ 32 ZabWacdecefngefg )

D(D —1)2(D—2)(D —3)%(D —4)

It turns out that:
W2|f:Q27 Z2|f:@2a W3|f:Q37 Y3|f:@297
X3|f292®7 Z3|f:@3, Y4|f:®397 X4|f:Q3@
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On-shell to off-shell dictionary

Define:

=m
IO =W, (L= m)Wat mWa) , TP =2, (1= m)Zs +miZs)
tom L
I =W, 7 ((1=m)Xs+mXe) , LV =2,7 (1—m)Ys+mYa),
with m; = mod(l, 2).

Dictionary:

On-shell Off-shell

The terms P?PQ), PPO and PPO2 alone cannot be translated into off-shell quantities.
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Uplift procedure

The process to map on-shell to off-shell is clear:
@ Start with known on-shell expressions.

@ Massage to express it in terms of P, Q and ©.
@ Apply the dictionary.

For instance, for quadratic Quasitopological Gravity:
© First step:

2(2)|f=w%%[(1_2f)nw_l <&2(1_f)+2—f/>]~

T T T
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Uplift procedure

The process to map on-shell to off-shell is clear:
@ Start with known on-shell expressions.

@ Massage to express it in terms of P, Q and ©.
@ Apply the dictionary.

For instance, for quadratic Quasitopological Gravity:

© First step:
B R
@ Second step:
Zo)lr = D ﬁ2D2 + DQI_)QG)Q Sl 1ZD = Q)QQ'

© Third step (after rescaling Z 5y so that R? is normalized to one):

Z3) = R* — 4R, R™ + Rapea R™.



All inequivalent Quasitopological Gravities in D > 5

The unique inequivalent Quasitopological Gravity at each curvature order n >
3 for D > 5 can be chosen to be

n—2

Z(”’l) = Rn + Z Rn_l_2 (7"’727l11(1) + ’Yn,l,*?Il(Z))

=0

n—3
T Z ]%n_l_3 (rYn,fl,ZIl(B) + ’Y’n,l,flz-l(4))
=0

n—4an—Il—4

D0 D wmepRT TN n> 3,
=0 p=0

with constants vy, only non-zero forl,p > —2 and l +p+4 < n, in which case

(DD —2)+4)(1+1)+4(D —1)(Dl+ 1)(p+2) + 4(D — 1)%(p + 2)?)
Ynlp = 22-1+p(D2? — D)=P=1-3(D — 2)I+2(I + 2)l(p+ 2)!(n — | — p — 4)! '
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@ For n =1 and n = 2, we only have GR and Gauss-Bonnet.




All inequivalent Quasitopological Gravities in D > 5

The unique inequivalent Quasitopological Gravity at each curvature order n >
3 for D > 5 can be chosen to be

n—2

Z(n) = Rn + Z Rn_l_2 (’Yn’izvll-l(l) + ’Yn,l,*?Il(Z))
=0

n—3

+ Z R 73 (’Yn,fl,lIl(B) + ’Yn,l,flzl(@)
=0
n—4an—Il—4

S S B IOT, 2,
=0 p=0

with constants vy, only non-zero forl,p > —2 and l +p+4 < n, in which case

(DD —2)+4)(1+1)+4(D —1)(Dl+ 1)(p+2) + 4(D — 1)%(p + 2)?)
Ynlp = 22-1+p(D2? — D)=P=1-3(D — 2)I+2(I + 2)l(p+ 2)!(n — | — p — 4)! '

@ For n =1 and n = 2, we only have GR and Gauss-Bonnet.
o It drastically simplifies previous expressions for Quasitopological Gravities.




All inequivalent GQGs in D > 5

The n — 2 inequivalent proper GQGs at each curvature order n > 3 with D > 5
can be taken to be

n—2

S(n,]) — R" + Z Rn—l—2 <Un,j,—2,lIl(1) + an,j,l,—2Il(2)>
=0

n—3
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n—4n—1—4
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withj =2,...,n—1 and o, j;, given prescribed constants.
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can be taken to be

n—2

S(n,]) — R" + Z Rn—l—2 <Un,j,—2,lIl(1) + an,j,l,—2Il(2)>
=0

n—3
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All inequivalent GQGs in D > 5

The n — 2 inequivalent proper GQGs at each curvature order n > 3 with D > 5
can be taken to be

n—2
Sy =R"+ Y R (Un,j,—z,lfz(l) + Un,j,l,—211(2)>
1=0
n—3
+D R (Un,j,fl,lfz(g) + gn,j,l,,lzl(“))
1=0
n—4n—Ii—4
+ Z Z Un,j,z,pR"_l_p_4I,(,1)Il(2) . n>3,
=0 p=0
withj =2,...,n—1 and o, j;, given prescribed constants.

N\

@ For n =1 and n = 2, we only have GR and Gauss-Bonnet.
@ First classification in the literature of all inequivalent GQGs in D > 5.
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Four-dimensional GQGs have to be studied separately: previous dictionary
does not apply.

Why? In D = 4, the Weyl W, and traceless Ricci Zy read:

e d] — 4 91 %q
Zyly =0(r) [Ty +op] -

Weealy = Q) [TETY — T4 + ol

Define map f such that f(T}?) = of and f(of) = T}*. Then:

FWapp) = Warp . f(Z51) = =281

Every tensor K, constructed with m Weyls and p traceless Riccis satisfies:

f(Kylr) = (=1DPKy ]y

Since K|y = s1T + s20f, for p odd K¢ is proportional to Z¢|s, so K¢|f = 0.



Four-dimensional GQGs have to be studied separately: previous dictionary
does not apply.

Why? In D = 4, the Weyl W, and traceless Ricci Zy read:

a a b a b
W alr = Q(r) [T[[CT]] T[[ ad% [[Cad%
Zyly =0(r) [Ty + op] -
Define map f such that f(T}?) = of and f(of) = T}*. Then:
FWarp) = Wap™ly §(Z815) = =235 -
Every tensor K, constructed with m Weyls and p traceless Riccis satisfies:
fKE ) = (=1)P K|y
Since K|y = s1T{ + so0f, for p odd K{|s is proportional to Z|, so K2|; = 0.

Conclusion: All contractions with odd numbers of Z;' vanish identically on
single-function SSS ansatz in D = 4.
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The four-dimensional dictionary will be much simpler!

Define:
1 abed 1 ab
Wy = §Wabch , Lay= ZZ Zab s
2 1
W3 = gWabchCdefWefaba Y3 = ZZabZCdWacbdv
=m
TN =Wy T (1= m)Wa + mWs) .
Dictionary:

On-shell Off-shell
Q(,,,)l+2 Il(l)
@(T)QH-Z Zé-i—l
Qr)e(r)**? ——— Z4Y3,
P(r) — R,

Observe that P2 and P9Q*©% ! alone cannot be translated into off-shell quantities.
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Previous restricted dictionary will reduce number of GQGs at each order.

Consider generic on-shell expression satisfying GQG condition in D = 4:

n—1

Fo=nZls+ Y BnsSwapls, n>3,
=2

for arbitrary coefficients au,, Bn ;.

Fn may be uplifted to off-shell density if and only if no terms of the form
PmQrO%k+1 appear.

Result: It happens if and only if o, =3, ; =0, j=2,...,n—2. Infact:

3

= 12—n(P —30)" 7% (2P — 6(n — 2)PQ

+3(n — 1)(16n02 + 3(2 — 3n)Q3))

]:n = S(n,n—l)'f



All GQGsin D=4

There exists a unique inequivalent GQG at each curvature ordern > 3 in D = 4.
It can be taken to be

n—2

S0 = B+ MR 22y + R + YAV RTI (R4 002,)
=0

where

—3)H2(1+1)(31 + 4)n!
n=-24n(n—1), B=-3n0-2m, N’ = : 2()1 + ;)‘(n )—(l - 2)? ’

48(n —1—2)(n—1—3)

2@ —
! (I+1)(31+4)
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where
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@ For n =1 we just have GR, for n = 2 there is no non-trivial GQG.



All GQGsin D=4

There exists a unique inequivalent GQG at each curvature ordern > 3 in D = 4.
It can be taken to be

n—2

S0 = B+ MR 22y + R + YAV RTI (R4 002,)
=0

where

(=3)2(1 + 1) (31 + 4)n!
200+ 2)(n—1-2)!

n=-2n(n-1), nw=-3n-2yn, A=

b (14 1)(31 + 4)

)\(2) _ 48(n —1—2)(n—1—3)

@ For n =1 we just have GR, for n = 2 there is no non-trivial GQG.

@ First proof of fact that there is one and only one inequivalent GQG at
each order in D = 4.
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Examples of GQGs

There are of course non-trivial examples of GQGs.
@ Cubic Quasitopological Gravity [Oliva, Ray '10; Myers, Robinson '10]:

Z(3) :Rabcdeedeeafc + RabcdRadeR

1 3(3D -38)
(2D - 3)(D —4) 8
3(3D — 4
_¥RacRcaR _ 3(D _ 2)RacbdRaCbeRde + 3DRacbdRabRCd
D
+6(D — 2)R,“R."Ry + %RC”] :
It defines a Quasitopological Gravity for D > 5 (algebraic eom for f).

No Quasitopological Gravity exists for D = 4 (apart from GR).



Examples of GQGs

@ Cubic proper GQG [Bueno, Cano '16, Hennigar, Kubiziiak, Mann '17]:
(38 — 29D + 4D?)
4(D—-2)(2D —-1)

4(2D? — 35D + 66)

RabcdRadeR

S = URSR IR + 2R R RS —

€

2(4D? + 9D — 30)

o ac pbd b pc pa
(D—2)(2D — 1) RapeaB™°R 3(D—2)(2D —1) RaFt R
AD? — 21D + 34 4D? —13D

( +3)RabRabR—( 3 +30)R3.
(D—2)(2D —1) 12(D—2)(2D — 1)

It is a non-trivial GQG for every D > 4 (second-order eom for f).



Examples of GQGs

@ Cubic proper GQG [Bueno, Cano '16, Hennigar, Kubiziiak, Mann '17]:

38 — 20D + 4D?)
Siay = 14R ¢8R ¢ fR ab 4 9pcdpab e_(
(3) Ra b Rc d tle f + Rab ceRd 4(D—2)(2D— 1)

4(2D? — 35D + 66)

RabcdRabcdR

2(4D2 +9D — 30) ac pbd b pc pa
T D-p@D 1) e R T ap — 1) Hafl
AD? — 21D + 34 4D? —13D
( +3)RabRabR—( 3 +30)R3.
(D-2)(2D - 1) 12(D - 2)(2D — 1)

It is a non-trivial GQG for every D > 4 (second-order eom for f). In D = 4,
by combining with cubic Lovelock density:

P =12RSIR R + Ry Reg™ Rey®™ — 12Rupca R°RY + SRERE RS

This is Einsteinian Cubic Gravity (ECG), first proper GQG identified.
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