PRINORDIAL FLUCTUATIONS FROM QUANTUM GRAVITY

Francesca Vidotto

Rotman Institute of Philosophy

ENGAGING SCIENCE.

QUANTUM GRAVITY IN COSMOLOGY

Graph State *as truncation of d.o.f.*

Lorentzian Transition Amplitude *numerically computable*

Hartle-Hawking State as initial vacuum state

Comparison with QFT computations

Image credit: ESA

QUANTUM COSMOLOGY

canonical / covariant quantization

symmetry reduction

cosmology

$$ds^2 = dt^2 - a^2(t) d^3 \vec{x}$$

+ perturbations

quantum gravity $W_v = (P_{SL(2,\mathbb{C})} \circ Y_\gamma \ \psi_v)(\mathbf{1})$

> quantum cosmology

SPINFOAM AMPLITUDES

Probability amplitude $P(\psi) = |\langle W | \psi \rangle|^2$ for a state Ψ associated to the boundary of a 4d region

- UV and IR finite (with Λ)
- Classical limit: discretized GR (with Λ) Barrett et al. '09

www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov '08]

 $W(q'_{ij}, q_{ij}) \sim \int_{\partial g = q', q} Dq \ e^{iS}$

SPINFOAM AMPLITUDES

Probability amplitude $P(\psi) = |\langle W | \psi \rangle|^2$ for a state Ψ associated to the boundary of a 4d region

- UV and IR finite (with Λ)
- Classical limit: discretized GR (with Λ) Barrett et al. '09

www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov '08]

 $W(q) \approx \int_{\partial g=q} Dq \ e^{iS[q]}$

Spinfoam Hartle-Hawking state

CARLO ROVELLI AND FRANCESCA VIDOTTO COVARIANT LOOP QUANTUM GRAVITY

AN ELEMENTARY INTRODUCTION TO QUANTUM GRAVITY AND SPINFOAM THEORY

SPINFOAM HARTLE-HAWKING STATES

Hartle-Hawking states:

$$\psi_H(q) = \int_{\partial g=q} Dg \, e^{iS[g]}$$

Spinfoam HH states:

$$W_{\mathcal{C}}(h_l) = \int_{SU(2)} dh_{vf} \prod_f \delta(h_f) \prod_v A(h_{vf})$$

[Bianchi, Rovelli, Vidotto'10]

SEMICLASSICAL REGIME

LQG coherent states peaked on a homogenous and isotropic geometry

Spinfoam amplitude with an effective Λ :

$$Z_{\mathcal{C}} = \sum_{j_f, \mathbf{v}_e} \prod_f (2j+1) \prod_e e^{i\lambda\mathbf{v}_e} \prod_v A_v(j_f)$$

[Bianchi, Krajewski, Rovelli, Vidotto'11]

 (\mathbf{v}_e)

QUANTUM COSMOLOGY

canonical / covariant quantization

symmetry reduction

cosmology

$$ds^2 = dt^2 - a^2(t) d^3 \vec{x}$$

+ perturbations

quantum gravity $W_v = (P_{SL(2,\mathbb{C})} \circ Y_\gamma \ \psi_v)(\mathbf{1})$

> quantum cosmology

.

FEW-NODE THEORY: REGGE CALCULUS

PROBLEM RESULT

Evolve one or few tetrahedra, triangulating a 3-sphere. Compare the evolution for 5, 16 and 600 tetrahedra. The qualitative behaviour is the same!

FIG. 1. Diagram illustrating a 4-dimensional block.

[Collins & Williams '72]

FIG. 2. Rate of change of the volume of the universe plotted against the volume for $MG/c^2 = 1$; analytic solution _____, 600-tetrahedron model _____, el ----· .

5-CELL PENTACHORDS

. . .

Simplest regular 4-polytope

Frisoni, Gozzini, Vidotto 2207.02881

Regular triangulation of S_3

OBSERVABLES

Area

Dihedral Angles \Rightarrow Curvature

Correlations

 $C(O_1, O_2) = \frac{\langle \psi_o | O_1 O_2 | \psi_o \rangle - \langle O_1 \rangle \langle O_2 \rangle}{(\Delta O_1) (\Delta O_2)}$

$\langle O \rangle = \langle \psi_o | O | \psi_o \rangle$

spread

 $\Delta O = \sqrt{\langle \psi_o | O^2 | \psi_o \rangle - \langle O \rangle^2}$

.

1. 3-sphere as emerging geometry

2. large fluctuations

3. large correlations

1. 3-sphere as emerging geometry

spread

- 2. large fluctuations
- 3. large correlations

		0.5
		0.4
1.	3-sphere as emerging geometry	0.3
		0.2
		0.1
2.	large fluctuations	0
		-0.1
3.	large correlations	-0.2
		-0.3
		-0.4
		-0.5

Gozzini, Vidotto 1906.02211

1. 3-sphere as emerging geometry

2. large fluctuations

3. large correlations

Gozzini, Vidotto 1906.02211

GRAPH REFINEMENT

D. J) j134 12345 j_{125}

Frisoni, Gozzini, Vidotto 2207.02881

GRAPH REFINEMENT

 ${\ \ \blacksquare \ } \operatorname{Partition:} \ {\mathscr H} = {\mathscr H}_A \otimes {\mathscr H}_{\bar{A}}$

Reduced density matrix: $\rho_A = \frac{1}{Z} T r_{\bar{A}} |\psi_0\rangle \langle \psi_0 |$

• Entanglement entropy: $S_A = -Tr(\rho_A \log \rho_A)$

Frisoni, Gozzini, Y	Vidotto	2207.0
---------------------	---------	--------

 ${\ \ \blacksquare \ } \operatorname{Partition:} \ {\mathscr H} = {\mathscr H}_A \otimes {\mathscr H}_{\bar{A}}$

Reduced density matrix: $\rho_A = \frac{1}{Z} T r_{\bar{A}} |\psi_0\rangle \langle \psi_0 |$

Entanglement entropy: $S_A = -Tr(\rho_A \log \rho_A)$

 ${\ \ \blacksquare \ } \operatorname{Partition:} \ {\mathscr H} = {\mathscr H}_A \otimes {\mathscr H}_{\bar{A}}$

Reduced density matrix: $\rho_A = \frac{1}{Z} T r_{\bar{A}} |\psi_0\rangle \langle \psi_0 |$

Entanglement entropy: $S_A = -Tr(\rho_A \log \rho_A)$

 ${\ \ \blacksquare \ } \operatorname{Partition:} \ {\mathscr H} = {\mathscr H}_A \otimes {\mathscr H}_{\bar{A}}$

Reduced density matrix: $\rho_A = \frac{1}{Z} T r_{\bar{A}} |\psi_0\rangle \langle \psi_0 |$

Entanglement entropy: $S_A = -Tr(\rho_A \log \rho_A)$

CORRELATIONS

. . .

- Partition: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_{\bar{A}}$
- Reduced density matrix: $\rho_A = \frac{1}{Z} T r_{\bar{A}} |\psi_0\rangle \langle \psi_0 |$
- Entanglement entropy: $S_A = -Tr(\rho_A \log \rho_A)$

BF 16-CELL MODEL

BF 16-CELL MODEL

PERTURBATIONS THEORY IN QFT

QFT correlations and entanglement entropy between specially separated regions

■ Strategy: ➤ Smearing of the field on two space-like separated 3-balls

Cosmological perturbations on a 3-sphere

Strategy: Expansion in spherical harmonics

Agullo, Bonga, Ribes-Metidieri, Kranas, Nadal-Gisbert 2023

Ried, Vidotto - in progress

SUMMARY

- Computing primordial quantum fluctuations from the full theory is one of the main goals of a quantum theory of gravity!
- Proposal: use Spinfoam Hartle-Hawking States
- Graph truncation: 5-cell (full) ✓, 20-cell (refinement) ✓, 16-cell (topological) ✓
- Computational challenge: compute expectation values for observables
- Results: 1. emerging S_3 geometry
 - 2. large fluctuations

Next: effective QFT model to compare with

3. large correlations (for adjacent nodes) \longrightarrow 16-cell needed for richer structure

COLLABORATIONS AND FUTURE DIRECTIONS

FIRST SIMPLE MODEL

- 1 vertex
- 5-cells boundary graph
- computation of observables
- high correlations

with Francesco Gozzini

MORE COMPLEX RELIABLE MODELS

- 1 vertex, 6 vertices
- 16-cells and 20-cells boundary graphs
- MCMC to compute observables
- rich behaviour of correlations

with Pietropaolo Frisoni

RELATION TO COSMOLOGICAL VACUUM

- properties of standard cosmological vacua
- QFT on a triangulated 3-sphere
- entanglement entropy

with Sofie Ried

NON-INFLATIONARY MODELS

- cosmological perturbations from an effective highly-correlated vacuum states
- matter bounce as an alternative to the inflationary models

with Mateo Pascual

