PRIMORDIAL FLUCTUATIONS FROM QUANTUM GRAVITY

Francesca Vidotto

Rotman Institute of Philosophy
ENGAGING SCIENCE.

QUANTUM GRAVITY IN COSMOLOGY

- Quantum Regime

Image credit: ESA

- Graph State as truncation of d.o.f.
- Lorentzian Transition Amplitude numerically computable
- Hartle-Hawking State as initial sacuum state
- Comparison with QFT computations

QUANTUM COSMOLOGY

canonical / covariant
quantization
gravity

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

symmetry

$$
\begin{aligned}
& \text { cosmology } \\
& d s^{2}= d t^{2}-a^{2}(t) d^{3} \vec{x} \\
&+ \text { perturbations }
\end{aligned}
$$

quantum gravity

$$
W_{v}=\left(P_{S L(2, \mathbb{C})} \circ Y_{\gamma} \psi_{v}\right)(\mathbb{I})
$$

\qquad \longrightarrow

SPINFOAM AMPLITUDES

Probability amplitude $P(\psi)=|\langle W \mid \psi\rangle|^{2}$
for a state ψ associated to the boundary of a 4 d region

- Superposition

$$
\begin{array}{r}
\langle W \mid \psi\rangle=\sum_{\sigma} W(\sigma) \\
W(\sigma) \sim \prod_{v} W_{v}
\end{array}
$$

Local vertex expansion

- Lorentz covariance

$$
W_{v}=\left(P_{S L(2, \mathbb{C})} \circ Y_{\gamma} \psi_{v}\right)(\mathbb{I})
$$

- UV and IR finite (with Λ)
- Classical limit: discretized GR (with Λ)

Barrett et al. ‘09

$$
W\left(q_{i j}^{\prime}, q_{i j}\right) \sim \int_{\partial g=q^{\prime}, q} D q e^{i S}
$$

SPINFOAM AMPLITUDES

Probability amplitude $P(\psi)=|\langle W \mid \psi\rangle|^{2}$ for a state ψ associated to the boundary of a 4 d region

- Superposition

$$
\begin{array}{r}
\langle W \mid \psi\rangle=\sum_{\sigma} W(\sigma) \\
W(\sigma) \sim \prod_{v} W_{v}
\end{array}
$$

- Local vertex expansion
- Lorentz covariance

$$
W_{v}=\left(P_{S L(2, \mathbb{C})} \circ Y_{\gamma} \psi_{v}\right)(\mathbb{I})
$$

- UV and IR finite (with Λ)
- Classical limit: discretized GR (with Λ) Barrett et al. ‘09

$$
W(q) \approx \int_{\partial g=q} D q e^{i S[q]}
$$

Spinfoam Hartle-Hawking state

SPINFOAM HARTLE-HAWKING STATES

- Hartle-Hawking states:

$$
\psi_{H}(q)=\int_{\partial g=q} D g e^{i S[g]}
$$

- Spinfoam HH states:

$$
W_{\mathcal{C}}\left(h_{l}\right)=\int_{S U(2)} d h_{v f} \prod_{f} \delta\left(h_{f}\right) \prod_{v} A\left(h_{v f}\right)
$$

SEMICLASSICAL REGIME

- LQG coherent states
peaked on a homogenous and isotropic geometry
- Spinfoam amplitude with an effective Λ :

$$
Z_{\mathcal{C}}=\sum_{j_{f}, v_{e}} \prod_{f}(2 j+1) \prod_{e} e^{i \lambda v_{e}} \prod_{v} A_{v}\left(j_{f}, \mathrm{v}_{e}\right)
$$

QUANTUM COSMOLOGY

canonical / covariant
quantization
gravity

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

\qquad \longrightarrow
quantum gravity

$$
W_{v}=\left(P_{S L(2, \mathbb{C})} \circ Y_{\gamma} \psi_{v}\right)(\mathbb{I})
$$

symmetry reduction
cosmology

$$
d s^{2}=d t^{2}-a^{2}(t) d^{3} \vec{x}
$$

+ perturbations
- IDEA
- PROBLEM
- RESULT

Evolve one or few tetrahedra, triangulating a 3 -sphere.
Compare the evolution for 5, 16 and 600 tetrahedra.
The qualitative behaviour is the same!

FIG. 1. Diagram illustrating a 4-dimensional block

FIG. 2. Rate of change of the volume of the universe plotted against the volume for $M G / c^{2}=1$; analytic solu tion -600 -tetrahedron model -------16-tetrahedron model - - - , 5-tetrahedron mod el —.—.—.

5-CELL PENTACHORDS

- Simplest regular 4-polytope
- Regular triangulation of S_{3}

OBSERVABLES

- Area
- Volume

$$
\langle O\rangle=\left\langle\psi_{o}\right| O\left|\psi_{o}\right\rangle
$$

- Dihedral Angles \Rightarrow Curvature

Correlations $\quad C\left(O_{1}, O_{2}\right)=\frac{\left\langle\psi_{o}\right| O_{1} O_{2}\left|\psi_{o}\right\rangle-\left\langle O_{1}\right\rangle\left\langle O_{2}\right\rangle}{\left(\Delta O_{1}\right)\left(\Delta O_{2}\right)} \quad \Delta O=\sqrt{\left\langle\psi_{o}\right| O^{2}\left|\psi_{o}\right\rangle-\langle O\rangle^{2}}$

- Entanglement

1. 3 -sphere as emerging geometry
2. large fluctuations
3. large correlations

RESULTS

1. 3 -sphere as emerging geometry
2. large fluctuations
3. large correlations

RESULTS

1. 3 -sphere as emerging geometry
2. large fluctuations
3. large correlations

RESULTS

1. 3 -sphere as emerging geometry
2. large fluctuations
3. large correlations

GRAPH REFINEMENT

GRAPH REFINEMENT

ENTANGLEMENT ENTROPY

- Partition: $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{\bar{A}}$
- Reduced density matrix: $\rho_{A}=\frac{1}{Z} \operatorname{Tr}_{\bar{A}}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
- Entanglement entropy: $S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)$

ENTANGLEMENT ENTROPY

- Partition: $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{\bar{A}}$
- Reduced density matrix: $\rho_{A}=\frac{1}{Z} \operatorname{Tr}_{\bar{A}}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
- Entanglement entropy: $S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)$

ENTANGLEMENT ENTROPY

- Partition: $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{\bar{A}}$
- Reduced density matrix: $\rho_{A}=\frac{1}{Z} \operatorname{Tr}_{\bar{A}}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
- Entanglement entropy: $S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)$

ENTANGLEMENT ENTROPY

- Partition: $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{\bar{A}}$
- Reduced density matrix: $\rho_{A}=\frac{1}{Z} \operatorname{Tr}_{\bar{A}}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$
- Entanglement entropy: $S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)$

CORRELATIONS

ENTANGLEMENT ENTROPY

BF entanglement entropy

ENTANGLEMENT ENTROPY

BF entanglement entropy

BF 16-CELL MODEL

BF 16-CELL MODEL

PERTURBATIONS THEORY IN QFT

- QFT correlations and entanglement entropy between specially separated regions
- Strategy: > Smearing of the field on two space-like separated 3-balls

Agullo, Bonga, Ribes-Metidieri, Kranas, Nadal-Gisbert 2023

- Cosmological perturbations on a 3-sphere
- Strategy: > Expansion in spherical harmonics

SUMMARY

- Computing primordial quantum fluctuations from the full theory is one of the main goals of a quantum theory of gravity!
- Proposal: use Spinfoam Hartle-Hawking States
\square Graph truncation: 5 -cell (full) $\checkmark, 20$-cell (refinement) $\checkmark, 16$-cell (topological) \checkmark
- Computational challenge: compute expectation values for observables
- Results: 1. emerging S_{3} geometry

2. large fluctuations
3. large correlations (for adjacent nodes) $\longrightarrow 16$-cell needed for richer structure

- Next: effective QFT model to compare with

COLLABORATIONS AND FUTURE DIRECTIONS

- FIRST SIMPLE MODEL
- 1 vertex
- 5-cells boundary graph
- computation of observables
- high correlations
with Francesco Gozzini
- MORE COMPLEX RELIABLE MODELS
- 1 vertex, 6 vertices
- 16 -cells and 20 -cells boundary graphs
- MCMC to compute observables
- rich behaviour of correlations
with Pietropaolo Frisoni
- RELATION TO COSMOLOGICAL VACUUM
- properties of standard cosmological vacua
- QFT on a triangulated 3-sphere
- entanglement entropy
with Sofie Ried

- NON-INFLATIONARY MODELS

- cosmological perturbations from an effective highly-correlated vacuum states
- matter bounce as an alternative to the inflationary models
with Mateo Pascual

