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QUANTUM GRAVITY IN COSMOLOGY

Quantum Regime 

Graph State as truncation of d.o.f. 

Lorentzian Transition Amplitude numerically computable  

Hartle-Hawking State as initial vacuum state 

Comparison with QFT computations
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QUANTUM COSMOLOGY

symmetry 
reduction

quantum 
cosmology

quantum gravitygravity

canonical / covariant 
quantization

Rµ⌫ � 1
2 gµ⌫ = 8⇡G Tµ⌫

cosmology

ds2 = dt2 � a2(t) d3~x

+ perturbations

Wv = (PSL(2,C) � Y� �v)(1I)

[Bianchi, Rovelli,Vidotto’10]



SPINFOAM AMPLITUDES

W (q0ij , qij) ⇠
Z

@g= q0,q
Dq ei S

for a state     associated to the boundary of  a 4d region 

Probability amplitude

Superposition 

Local vertex expansion 

Lorentz covariance

www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf  

UV and IR finite (with Λ) 

Classical limit: discretized GR (with Λ) 
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Spinfoam Hartle-Hawking state
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Hartle-Hawking states:

Spinfoam HH states:
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[Bianchi, Rovelli,Vidotto’10]SPINFOAM HARTLE-HAWKING STATES

ψH(q) = ∫∂g=q
Dg eiS[g]



Spinfoam amplitude with an effective :Λ

[Bianchi, Krajewski, Rovelli,Vidotto’11]SEMICLASSICAL REGIME
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LQG coherent states 
peaked on a homogenous and isotropic geometry
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 FEW-NODE THEORY:   REGGE CALCULUS

IDEA             Evolve one or few tetrahedra, triangulating a 3-sphere. 
PROBLEM    Compare the evolution for 5, 16 and 600 tetrahedra. 
RESULT        The qualitative behaviour is the same!  

[Collins & Williams ’72]



5-CELL PENTACHORDS

•

Frisoni, Gozzini, Vidotto 2207.02881

Simplest regular 4-polytope Regular triangulation of S3



OBSERVABLES

Area 

Volume                                                                      

Dihedral Angles ⇒  Curvature                                                                             spread 

Correlations                               

Entanglement

⟨O⟩ = ⟨ψo |O |ψo⟩

C(O1, O2) = ⟨ψo |O1O2 |ψo⟩ − ⟨O1⟩⟨O2⟩
(ΔO1) (ΔO2)

ΔO = ⟨ψo |O2 |ψo⟩ − ⟨O⟩2



RESULTS

1. 3-sphere as emerging geometry 

2. large fluctuations 

3. large correlations

2 4 6 8 10 12 14 16
scale factor j

-0.3336

-0.3335

-0.3334

-0.3333

-0.3332

-0.3331

-0.333

co
s 

Gozzini, Vidotto 1906.02211



RESULTS

1. 3-sphere as emerging geometry 

2. large fluctuations 

3. large correlations

2 4 6 8 10 12 14 16
scale factor j

-0.3336

-0.3335

-0.3334

-0.3333

-0.3332

-0.3331

-0.333

co
s 

2 4 6 8 10 12 14 16
scale factor j

0.6

0.65

0.7

0.75

0.8

0.85

0.9

sp
re

ad

Gozzini, Vidotto 1906.02211



RESULTS

1. 3-sphere as emerging geometry 

2. large fluctuations 

3. large correlations

2 4 6 8 10 12 14 16
scale factor j

-0.3336

-0.3335

-0.3334

-0.3333

-0.3332

-0.3331

-0.333

co
s 

2 4 6 8 10 12 14 16
scale factor j

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14 16
scale factor j

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Gozzini, Vidotto 1906.02211



RESULTS

1. 3-sphere as emerging geometry 

2. large fluctuations 

3. large correlations

2 4 6 8 10 12 14 16
scale factor j

-0.3336

-0.3335

-0.3334

-0.3333

-0.3332

-0.3331

-0.333

co
s 

2 4 6 8 10 12 14 16
scale factor j

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14 16
scale factor j

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Gozzini, Vidotto 1906.02211

0 2 4 6 8 10 12 14 16
scale factor j

1

1.5

2

2.5

3

3.5



GRAPH REFINEMENT

•

••
•

••

Frisoni, Gozzini, Vidotto 2207.02881



GRAPH REFINEMENT

•

••
•

••

•
• •

••

Frisoni, Gozzini, Vidotto 2207.02881



ENTANGLEMENT ENTROPY

Partition:    

Reduced density matrix:    

Entanglement entropy:    

ℋ = ℋA ⊗ ℋĀ

ρA = 1
Z

TrĀ |ψ0⟩⟨ψ0 |

SA = − Tr (ρA log ρA)
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ρA = 1
Z
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CORRELATIONS
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MCMC methods for graph refinement in covariant LQG, with P. Frisoni & F. Gozzini

Frisoni, Gozzini, Vidotto 2207.02881



ENTANGLEMENT ENTROPY
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Bianchi, Donà, Vilensky “Entanglement entropy of Bell-network states in LQG”

Partition:    

Reduced density matrix:    

Entanglement entropy:    

ℋ = ℋA ⊗ ℋĀ

ρA = 1
Z

TrĀ |ψ0⟩⟨ψ0 |

SA = − Tr (ρA log ρA)

Francesca Vidotto
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BF 16-CELL MODEL
4

FIG. 1: Left: Geometry of the 16-cell triangulation. Numbers correspond to points, and lines correspond to
segments (the internal one is dashed in red). Right: The corresponding spinfoam, with eight vertices and
six internal faces (highlighted with di↵erent colors). The labels refer to the points in the triangulation. We

label only the edges not to clutter the picture.

face with 3 (each face is dual to a triangle). All tetrahedra in the triangulation labeled with points 1 and 5
are in the spinfoam bulk, while the remaining ones (labeled with points 1 or 5) are on the boundary. The
tetrahedra in the triangulation sharing 3 points are glued on a face in the spinfoam. For example, the two
tetrahedra labeled with points 5678 and 5278 are connected by a link on the boundary of the spinfoam.

We first perform the integrals over SU(2) in each one of the 16 boundary tetrahedra using relation (B4),
defined in Appendix B. Applying (B4) we have an intertwiner on each boundary tetrahedron of the spinfoam.
Since the BF topological invariance allows computing the amplitude by focusing on the boundary, we perform
the integrals over the 6 internal faces of the 16-cell spinfoam. We are left with the diagram reported in the
top left panel of Figure 2, where each boundary intertwiner is represented with a brown dot. A Wigner
48j symbol constitutes the boundary of the 16-cell spinfoam amplitude. To compute it e�ciently, we write
the symbol as contractions of smaller Wigner 21j symbols. The definition of the 21j symbol split as the
contraction of 6j and 9j symbols is bulky. Therefore it is reported in Appendix B (see (B7)). We take
advantage of it to write the “north and south” amplitudes associated with the boundary of the top right
panel in Figure 2. These are given by the contraction of 21j symbols along the vertical purple spins:

WN =
X

p1,p2

{21j} (j, i1, i2, i3, i4, b1, b2, b3, p1, p2) {21j} (j, i16, i15, i14, i13, b5, b4, b3, p1, p2) dp1dp2 (11)

WS =
X

p1,p2

{21j} (j, i8, i7, i6, i5, b1, b2, b3, p1, p2) {21j} (j, i9, i10, i11, i12, b5, b4, b3, p1, p2) dp1dp2(�1)� , (12)

where � = 2p1 + 2p2 + 3b3 and djk ⌘ 2jk + 1. Finally, we contract the “north and south” amplitudes (11) -
(12) along the five horizontal blue spins in the top right panel of Figure 2. Therefore, we write the expression
for the 16-cell BF spinfoam amplitude as:

W (j, in) =
X

b1...b5

(WN ·WS · db1db2db3db4db5) ·
16Y

k=1

p
dik , (13)

where in = i1 . . . i16.

Frisoni, Gozzini, Vidotto - to appear



BF 16-CELL MODEL
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FIG. 7: Normal distribution (23) of the expectation values of the dihedral angle operator (24). The
statistical fluctuations increase as a function of the boundary spin j.

of Figure 8, we report the exact same boundary of the 16-cell spinfoam defined in Section III, labeling the
nodes with numbers. We do this to identify the correlations within the 16-cell geometry easily. Looking at
the correlation values, we notice that each node k is equivalent to node k ± 4. This is because the 16-cell
spinfoam boundary is symmetrical for 90 degree rotations. Interestingly, there are relatively high values
of the correlations between nodes not directly connected by a link (for example, 1-9, 5-13, etc.). In other
words, some couples of non-adjacent nodes are strongly correlated. This is the striking di↵erence between
the 16-cell geometry and the spinfoam model studied in [2] or the 4-simplex [1].

FIG. 8: Left: 16-cell spinfoam boundary (same as Figure 2) with nodes labeled by numbers Right: Some
values of quantum correlations (21) as a function of the boundary spin j.

In Figure 8, we explicitly show the correlation between just a few couples of nodes not to clutter the picture.
We infer that correlations are constant as a function of the boundary spin j, confirming the trend observed
in [1, 2]. In Figure 9, we show the numerical values of (21) computed between all possible combinations
to emphasize the complete pattern of nodes. We report the tables for the minimum and maximum values
considered for the boundary spins for visualization purposes. From Figure 8, it is evident that the values
between j = 0.5 and j = 4 have very similar values.

Frisoni, Gozzini, Vidotto - to appear



PERTURBATIONS THEORY IN QFT

Ried, Vidotto - in progress

QFT correlations and entanglement entropy between specially separated regions 

Strategy:  ➤ Smearing of the field on two space-like separated 3-balls 

Cosmological perturbations on a 3-sphere 

Strategy:  ➤ Expansion in spherical harmonics

Agullo, Bonga, Ribes-Metidieri, 
Kranas, Nadal-Gisbert  2023



SUMMARY

Computing primordial quantum fluctuations from the full theory  
is one of the main goals of a quantum theory of gravity! 

Proposal: use Spinfoam Hartle-Hawking States 

Graph truncation: 5-cell (full) ✓, 20-cell (refinement) ✓, 16-cell (topological) ✓ 

Computational challenge: compute expectation values for observables 

Results:  1. emerging  geometry 
2. large fluctuations 
3. large correlations (for adjacent nodes) ⟶ 16-cell needed for richer structure 

Next: effective QFT model to compare with

S3



COLLABORATIONS AND FUTURE DIRECTIONS

with Francesco Gozzini

with Mateo Pascualwith Pietropaolo Frisoni

FIRST SIMPLE MODEL 

1 vertex 
5-cells boundary graph 
computation of observables 
high correlations

RELATION TO COSMOLOGICAL VACUUM 

properties of standard cosmological vacua 
QFT on a triangulated 3-sphere 
entanglement entropy

NON-INFLATIONARY MODELS 

cosmological perturbations from an effective 
highly-correlated vacuum states 
matter bounce as an alternative 
to the inflationary models

MORE COMPLEX RELIABLE MODELS 

1 vertex, 6 vertices 
16-cells and 20-cells boundary graphs 
MCMC to compute observables 
rich behaviour of correlations

with Sofie Ried


