

Trento Institute for **Fundamental Physics** and Applications

SCALE-INVARIANT INFLATION

Chiara Cecchini

XXV SIGRAV Conference on Relativity and Gravitation 4–8 September 2023

Department of Physics, University of Trento, Italy – TIFPA–INFN

September, 4th 2023

1. FUNDAMENTAL SCALE INVARIANCE

2. SCALE-INVARIANT QUADRATIC GRAVITY

3. INFLATIONARY PREDICTIONS

UNIFYING PRINCIPLE FOR 3 MAIN ISSUES

INFLATION

How to realise naturally flat inflationary potentials without fine-tuning?

UNIFYING PRINCIPLE FOR 3 MAIN ISSUES

INFLATION

How to realise naturally flat inflationary potentials without fine-tuning?

COSMOLOGICAL CONSTANT PROBLEM

What drives the present Λ so small?

 $\frac{\rho_{vac}}{2} \sim 10^{120}$ ho_{Λ}

UNIFYING PRINCIPLE FOR 3 MAIN ISSUES

INFLATION

How to realise naturally flat inflationary potentials without fine-tuning?

COSMOLOGICAL CONSTANT PROBLEM

What drives the present Λ so small?

RENORMALIZABILITY

Can we find a new, highly predictive, criterion beyond renormalizability?

$$\frac{\rho_{vac}}{\rho_{\Lambda}} \sim 10^{120}$$

FUNDAMENTAL SCALE INVARIANCE

Basic idea: a fundamental QFT does not involve any intrinsic parameter with dimension of mass or length

Following Wetterich, we can introduce an explicit mass scale k

C. Wetterich, Nuclear Physics B, 115326 (2021) A. Strumia & A. Salvio, J High Energ Phys, 6 (2017)

Canonical field $\phi = k \tilde{\phi} \longrightarrow$ Scale-invariant field Dimension of a mass

FUNDAMENTAL SCALE INVARIANCE

Basic idea: a fundamental QFT does not involve any intrinsic parameter with dimension of mass or length

Following Wetterich, we can introduce an explicit mass scale k

Canonical field $\phi = k \tilde{\phi} \rightarrow$ Dimension of a mass

The corresponding effective actions obey

 $k\partial_k\Gamma_k[\phi] = \zeta_k[\phi]$

General solution

C. Wetterich, Nuclear Physics B, 115326 (2021) A. Strumia & A. Salvio, J High Energ Phys, 6 (2017)

Scale-invariant field Dimensionless

 $k\partial_{\nu}\Gamma_{\nu}[\phi] = 0$

Particular, scaling solution holding when the canonical fields are expressed in terms of the scale-invariant ones

FUNDAMENTAL SCALE INVARIANCE NATURALLY FLAT POTENTIALS FOR INFLATION

Scale-invariant theory non-minimally coupled to gravity

$$\mathcal{L}_J = \sqrt{-g} \left[\xi \phi^2 R - \lambda \phi^4 - \frac{1}{2} (\partial \phi)^2 \right]$$

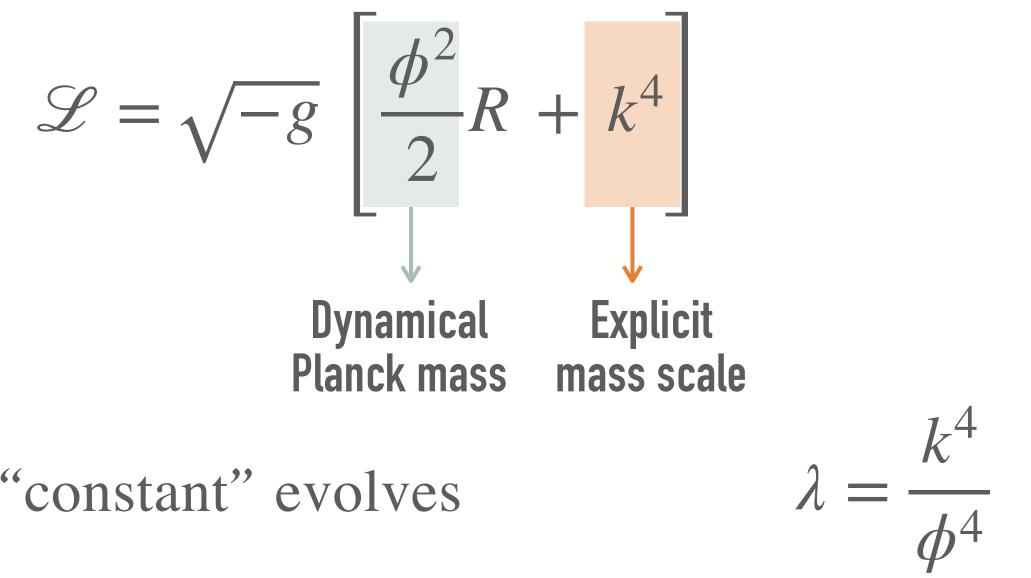
Weyl rescaling from the Jordan to the Einstein frame

$$\mathscr{L}_{E} = \sqrt{-\tilde{g}} \left[\frac{M_{pl}^{2}}{2} \tilde{R} - M_{l}^{4} \frac{\lambda}{\xi^{2}} - \frac{1}{2} (\partial \tilde{\phi})^{2} \right]$$

The potential is flat at tree-level: no fine-tuning. Scale symmetry breaking can occur from quantum corrections.

FUNDAMENTAL SCALE INVARIANCE **EXPLICIT SCALE SYMMETRY BREAKING AND DYNAMICAL DARK ENERGY**

Introduce a small explicit scale-symmetry breaking term



The effective cosmological "constant" evolves

For cosmological solutions ϕ increases without bounds such that $\lambda \to 0$ in the infinite future.

* Today $k \sim 10^{-3} \,\mathrm{eV}$ for $\phi \sim M_{pl}$

FUNDAMENTAL SCALE INVARIANCE **A CRITERION BEYOND RENORMALIZABILITY**

continuum limit if one employs renormalized fields

For general renormalizable theories the effective action remains well defined in the

Renormalized fields $\leftarrow \phi_{R,i}(x) = k^{d_i} f_i(k) \, \tilde{\phi}_i(x) \longrightarrow \text{Scale-invariant field}$

FUNDAMENTAL SCALE INVARIANCE **A CRITERION BEYOND RENORMALIZABILITY**

continuum limit if one employs renormalized fields

Theories with fundamental scale invariance:

- ► Renormalizable
- For some choice of the fields $\tilde{\phi}$ the effective action becomes k-independent
- Exact scaling solutions: no free parameters. High predictive power

- For general renormalizable theories the effective action remains well defined in the
 - Renormalized fields $\leftarrow \phi_{R,i}(x) = k^{d_i} f_i(k) \, \phi_i(x) \longrightarrow \text{Scale-invariant field}$

SCALE-INVARIANT QUADRATIC GRAVITY THE MODEL

 $\blacktriangleright \mathscr{L}_{EH} \longrightarrow f(R, \phi)$: scalar-tensor theory of modified gravity

► Most general scale-invariant \mathscr{L} up to R^2

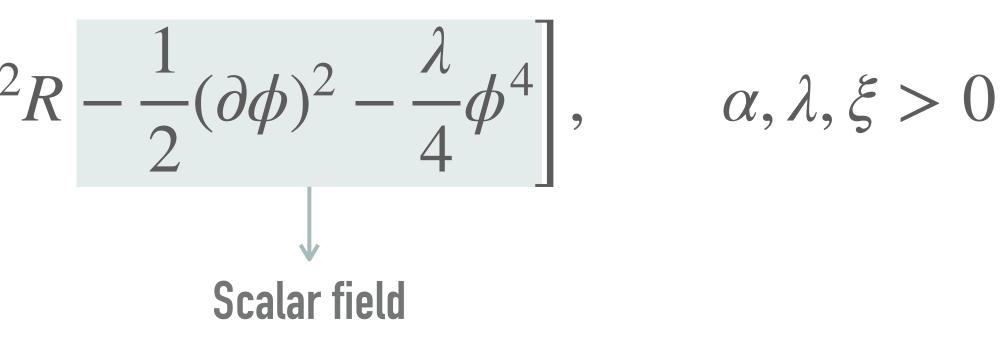
$$\mathscr{L}_{J} = \sqrt{-g} \left[\frac{\alpha}{36} R^{2} + \frac{\xi}{6} \phi^{2} \right]$$

Higher order term
in R

Scale transformations act as • $\bar{g}_{\mu\nu}(x) = g_{\mu\nu}(\ell x)$

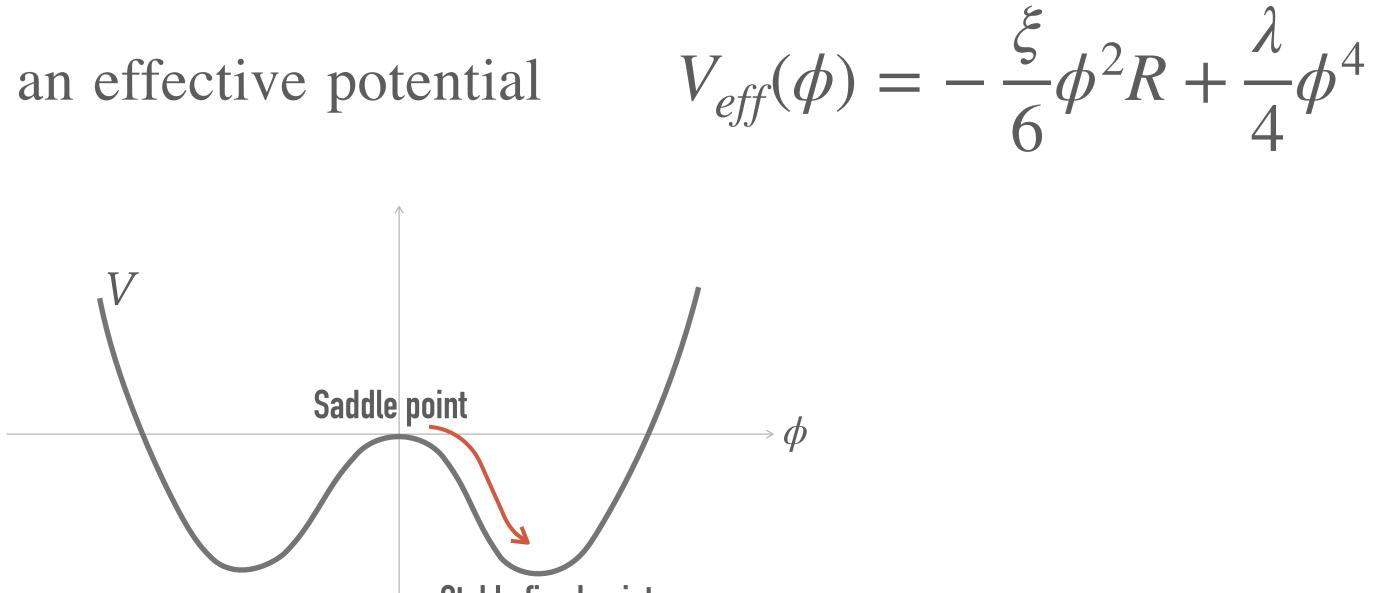
•
$$\bar{\phi}(x)$$

M. Rinaldi and L. Vanzo PR D 94 (2016)



SCALE-INVARIANT QUADRATIC GRAVITY Jordan Frame

The field ϕ is subjected to an effective potential



Classical scale-symmetry breaking

The scalar field takes a non-zero VEV at the minimum

$$\langle \phi_0^2 \rangle = \frac{\xi R}{3\lambda}$$

Stable fixed point

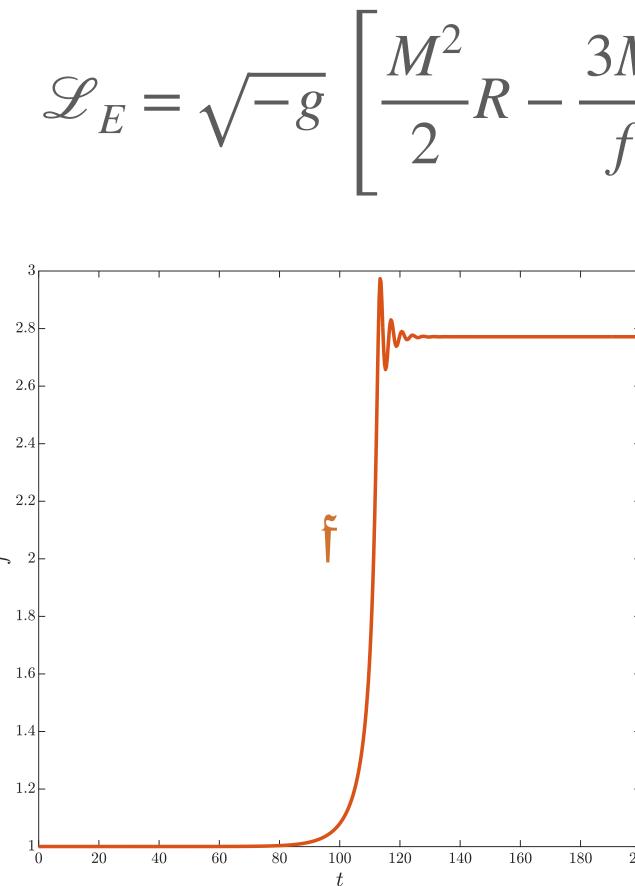
Dynamical generation of a mass scale

Natural identification with the Planck mass $\xi = 1$

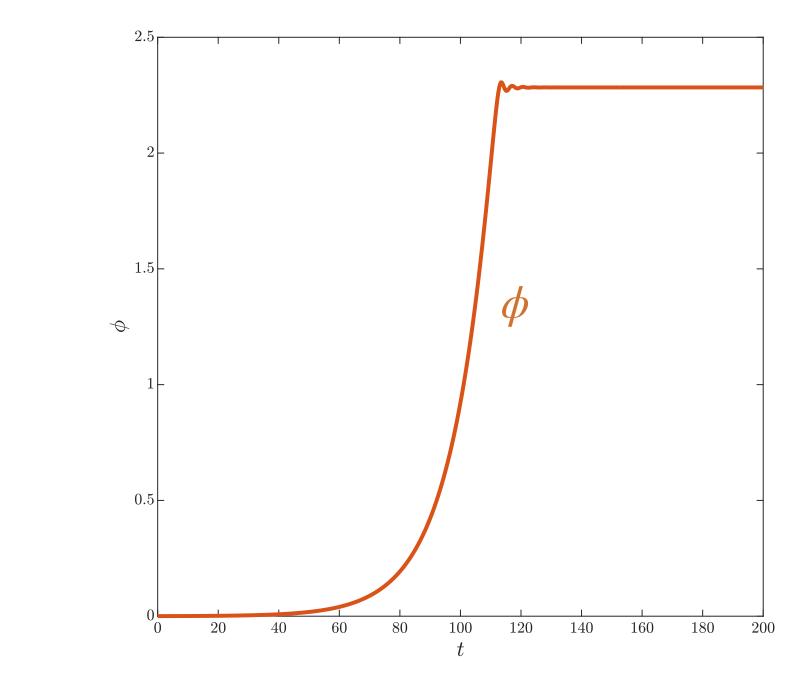
$$\frac{\xi}{6}\phi_0^2 R \equiv \frac{1}{2}M_{pl}^2 R$$

SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME $g_{\mu\nu}^* = \Omega^2 g_{\mu\nu}$

Two dynamical degrees of freedom: are we in multi-field inflation?



 $\mathscr{L}_{E} = \sqrt{-g} \left| \frac{M^{2}}{2} R - \frac{3M^{2}}{f^{2}} (\partial f)^{2} - \frac{f^{2}}{2M^{2}} (\partial \phi)^{2} - V(f,\phi) \right|$

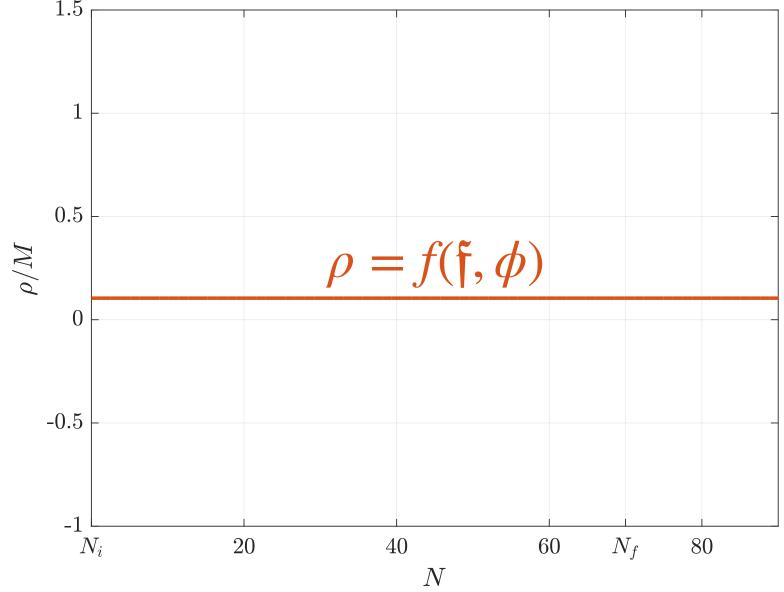


SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME: FIELDS' REDEFINITION

Noether's current conservation can be employed to shift all the dynamics on one field

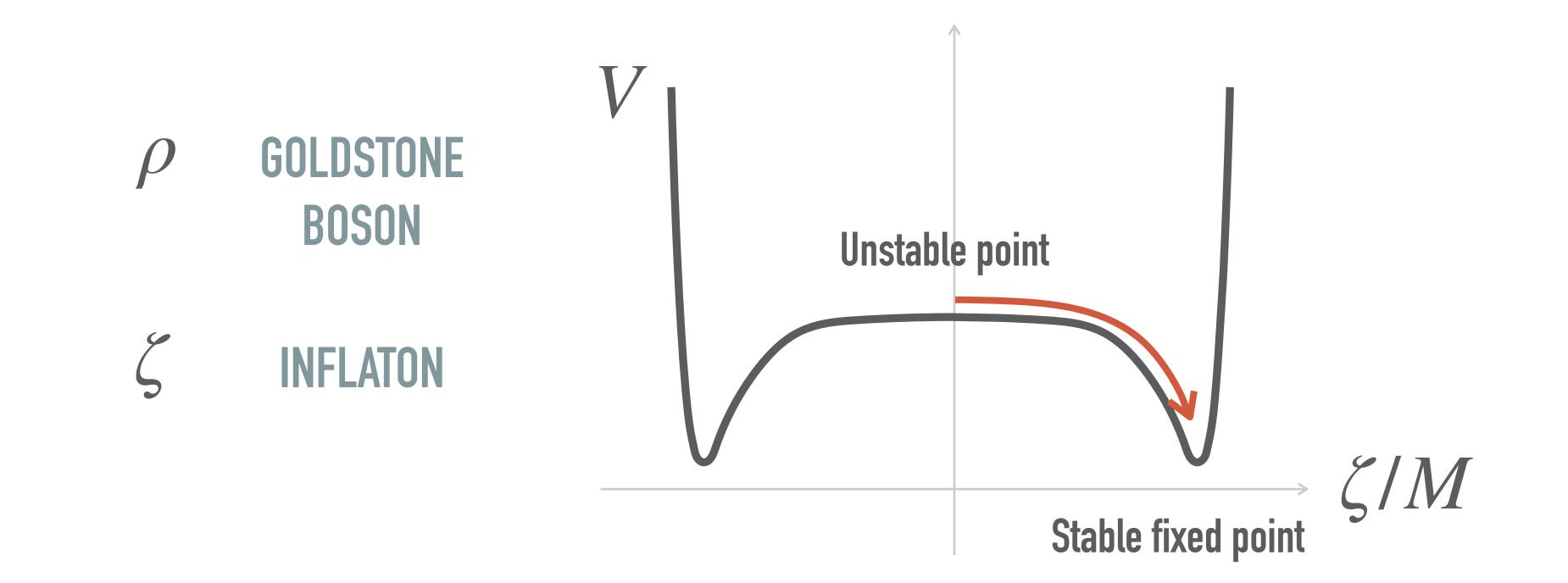
$$\mathscr{L}_{E} = \sqrt{-g} \left(\frac{M^{2}}{2}R - \frac{1}{2}\partial_{\mu}\zeta \partial^{\mu}\zeta - 3\operatorname{Cosh} \left[\frac{\zeta}{\sqrt{6}M} \right]^{2} \partial_{\mu}\rho \partial^{\mu}\rho - U(\zeta) \right)$$

G. Tambalo & M. Rinaldi Gen Relativ Gravit 49 (2017)



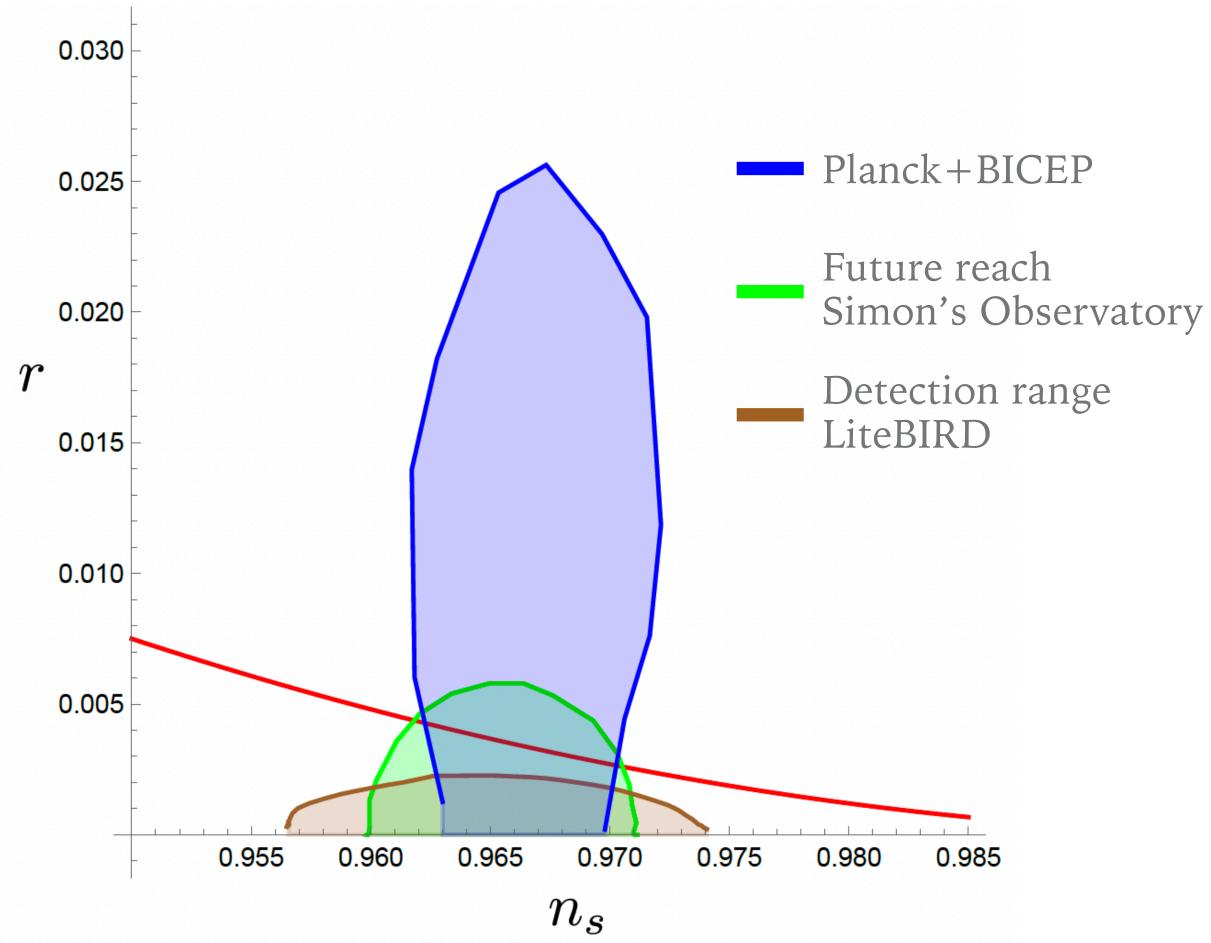
SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME: SINGLE-FIELD POTENTIAL

- ► Naturally flat plateau: no fine-tuning
- ► Non-vanishing at the minima



INFLATIONARY PREDICTIONS PRIMORDIAL SPECTRA

Single-field predictions are recovered, both in the Jordan and the Einstein frame



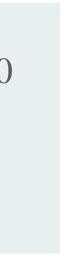
A. Ghoshal, D. Mukherjee, & M. Rinaldi JHEP 5 (2023)

Scalar perturbations

$$\Delta_s^2(k) = \frac{1}{2M_{pl}^2 \epsilon} \left(\frac{H}{2\pi}\right)^2 \bigg|_{k=aH}$$

$$\Delta_t^2(k) = \frac{2}{\pi^2} \left(\frac{H}{M_{pl}} \right)^2 \bigg|_{k=aH}$$

- $\Omega = \alpha \lambda + \xi^2 \lesssim 1.15 \, \xi^2$ • $\alpha \gtrsim 2 \times 10^{10}$
- $\xi \leq 1.3 \times 10^{-2}$ • $\Delta N \gtrsim 55$



SUMMARY

- Dynamical dark energy and naturally flat potentials for inflation
- ► Modify gravity adopting scale invariance as a guiding principle
- ► Noether's current conservation for single-field dynamics

Fundamental scale invariance as a new theoretical principle beyond renormalizability

BACKUP SLIDES

FUNDAMENTAL SCALE INVARIANCE **COSMOLOGY AS AN UV-IR CROSSOVER**

Fundamental scale invariance

The effective action only depends on one scale k which can be reabsorbed into a fields' redefinition

 $\succ k \rightarrow \infty$: UV fixed point $\succ k \rightarrow 0$: IR fixed point

Cosmology as a crossover between an UV (inflation) and an IR fixed point (we are already close to it)

Quantum scale invariance

The effective action carries no scale at all

All couplings $g(\phi)$ become constant and dimensionless

INFLATIONARY PREDICTIONS PRIMORDIAL SPECTRA

Even with non-zero initial velocity the Goldstone boson does not contribute

Single-field predictions are recovered, both in the Jordan and the Einstein frame

Scalar perturbations

C. Cecchini & M. Rinaldi in preparation

$$\Delta_s^2(k) = \frac{1}{2M_{pl}^2 \epsilon} \left(\frac{H}{2\pi}\right)^2 \bigg|_{k=aH}$$

 $n_{\rm s} - 1 \approx -6 \epsilon(\zeta_*) + 2\eta(\zeta_*)$

 $\rho'(N) \sim e^{-3N} \to 0$

Tensor perturbations

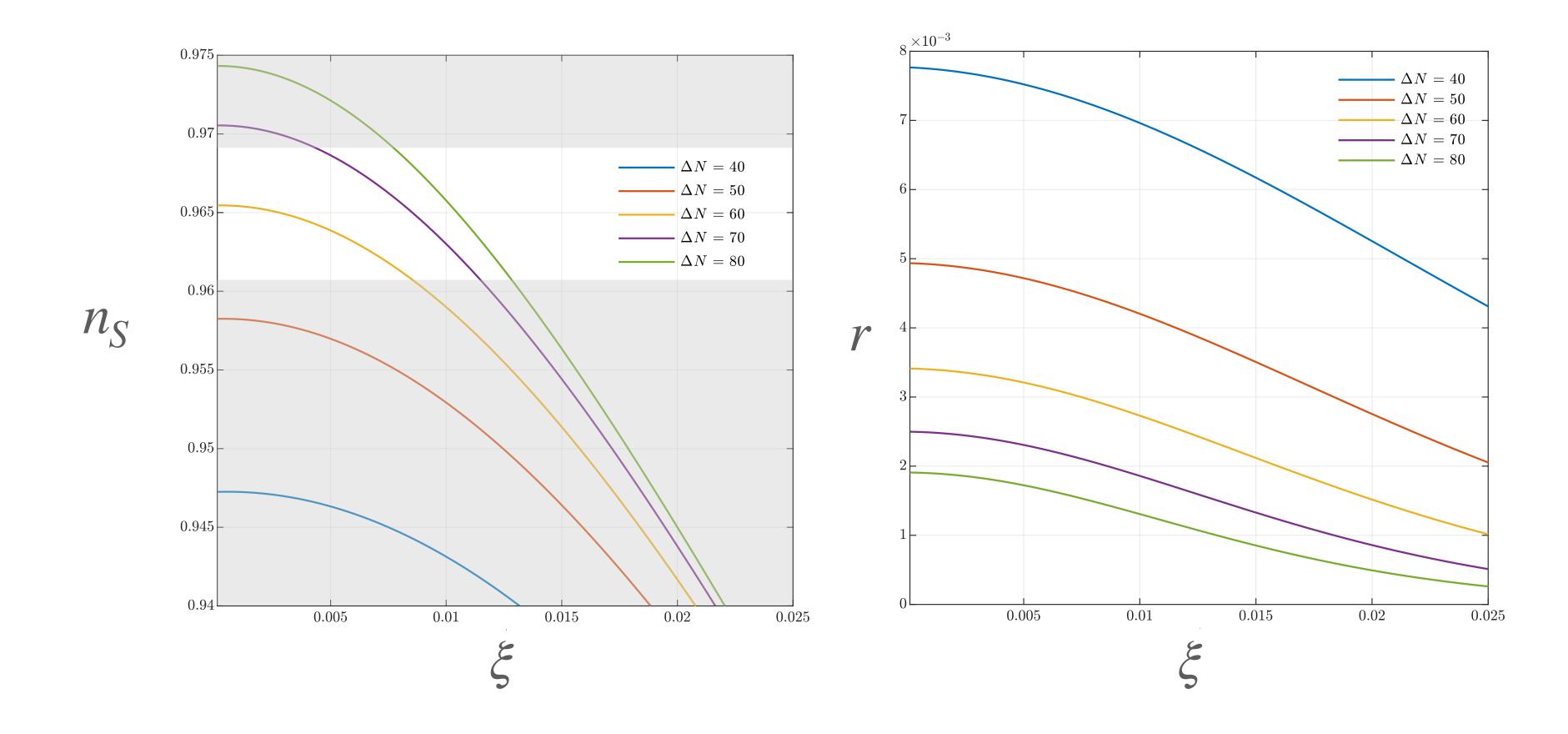
A. Ghoshal, D. Mukherjee, & M. Rinaldi JHEP 5 (2023)

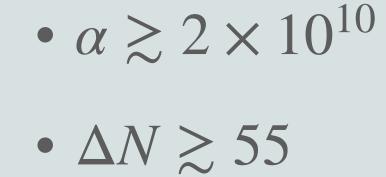
$$\Delta_t^2(k) = \frac{2}{\pi^2} \left(\frac{H}{M_{pl}} \right)^2 \bigg|_{k=aH}$$

$$r \approx -16 \epsilon(\zeta_*)$$

INFLATIONARY PREDICTIONS SPECTRAL INDICES

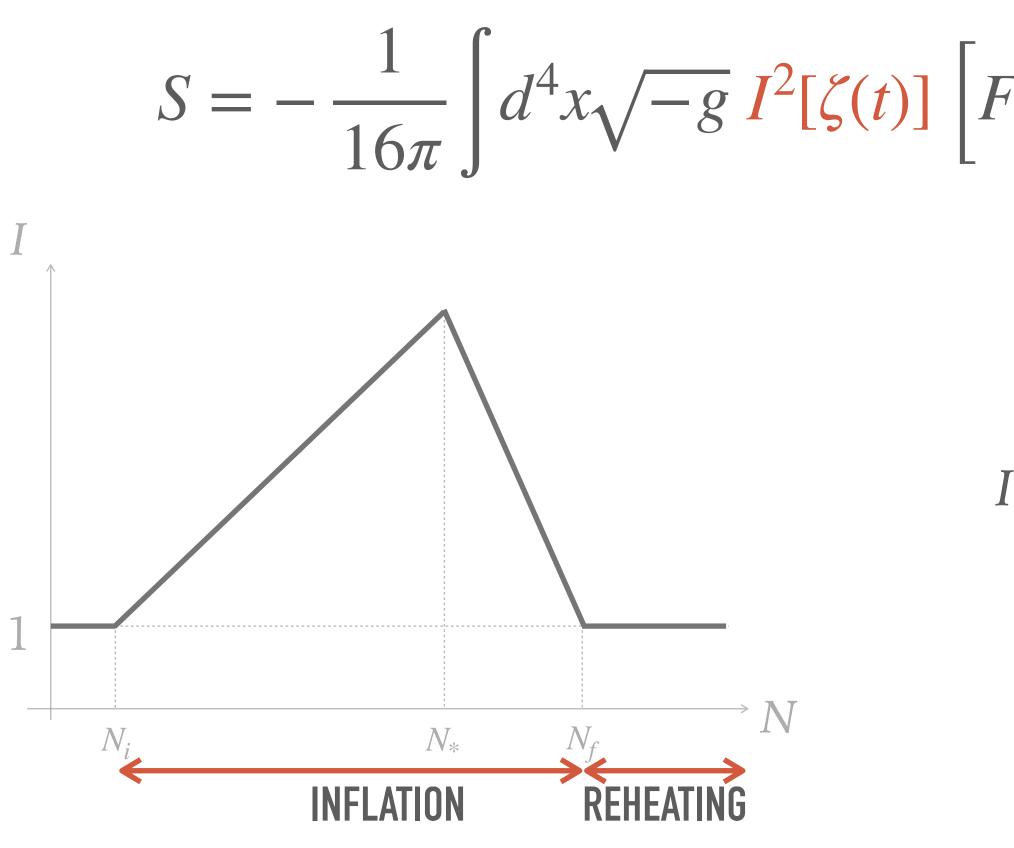
- $\Omega = \alpha \lambda + \xi^2 \lesssim 1.15 \,\xi^2$ $\alpha \gtrsim 2 \times 10^{10}$
- $\xi \lesssim 1.3 \times 10^{-2}$





INFLATIONARY PREDICTIONS Magnetogenesis

Modify the Maxwell's action and add helicity to generate primordial magnetic fields through a sawtooth coupling to the inflaton: EM conformal invariance is broken only during inflation \rightarrow amplification of vector perturbations



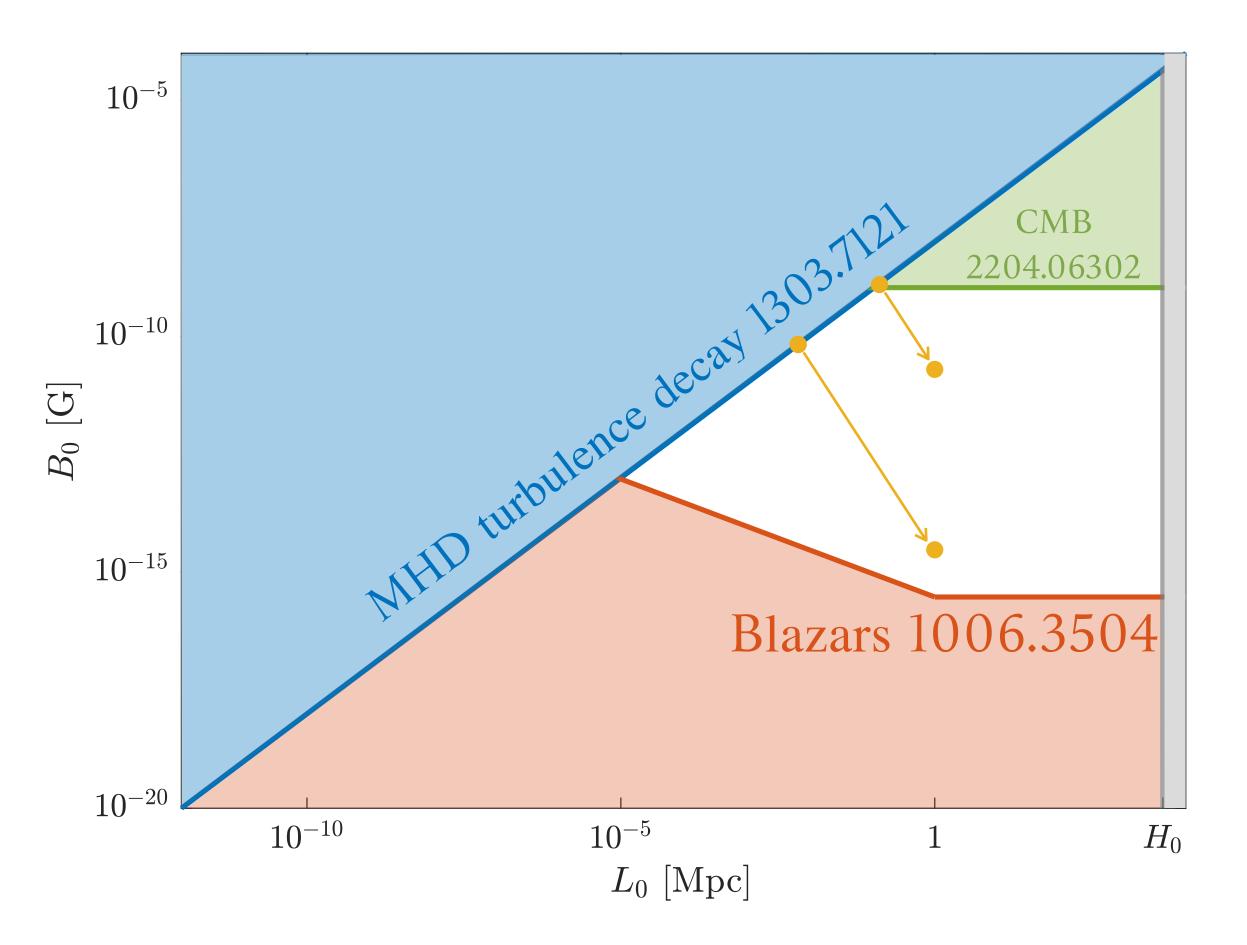
C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)

$$F_{\mu\nu}F^{\mu\nu} - \gamma F_{\mu\nu}\tilde{F}^{\mu\nu} + \int d^4x \sqrt{-g}\mathscr{L}_E$$

$$I = \begin{cases} \mathscr{C}\left(\frac{a}{a_*}\right)^{\nu_1} & a_i > a > a_* \\ \mathscr{C}\left(\frac{a}{a_*}\right)^{-\nu_2} & a_* > a > a_j \end{cases}$$

INFLATIONARY PREDICTIONS Magnetogenesis

Present-day magnetic field's amplitude and coherence length compatible with bounds on the IGM fields



C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)