
XXV SIGRAV Conference on General Relativity and
Gravitation, Trieste, Italy

Bianchi-I cosmologies, magnetic fields and

singularities

A.Yu. Kamenshchik

University of Bologna and INFN, Bologna,Italy

September 4-8, 2023



Based on:

Roberto Casadio, Alexander Kamenshchik, Panagiotis
Mavroiannis and Polina Petriakova,

Bianchi-I cosmologies, magnetic fields and singularities,

submitted to Physical Review D, arXiv: 2307.12830 [gr-qc]



Content

1. Introduction and motivations

2. Bianchi-I universes with a magnetic field

3. Bianchi-I universes with a magnetic field and a perfect
fluid

4. How to cross singularity?

5. Conclusions



Introduction and Motivations

I Almost all modern cosmology is based on the
Friedmann-Lemâıtre spatially homogeneous and isotropic
cosmological models.

ds2 = dt2 − a2(t)

(
dr 2

1− kr 2
+ r 2(dθ2 + sin2 θdφ2)

)
.

I The study of spatially homogeneous, but anisotropic
models which takes its origin in the work by Luigi
Bianchi, represents a great interest from both
mathematical and physical points of view.

I The simplest spatially homogeneous and anisotropic
cosmological model is the Bianchi - I model.

ds2 = dt2 − (a2(t)dx2 + b2(t)dy 2 + c2(t)dz2).

I The first general exact anisotropic solution for this metric
in empty space was found by Kasner in 1921.



I In 1963 Khalatnikov and Lifshitz have begun applying the
Bianchi universes (and in particular Bianchi -I universe)
for the study of the problem of the singularity.

I At the end of sixties Belinski, Khalatnikov and Lifshitz
have discovered the phenomenon of the oscillatory
approach to the cosmological singularity.

I Later it was understood that when the universe tends to
the singularity its dynamics becomes chaotic.

I Exact solutions for the Bianchi - I universe filled with
isotropic perfect fluid were also studied (Heckmann and
Schucking, Jacobs).

I The dynamics of the Bianchi-I universe filled with a
magnetic field is particularly interesting
(Rosen,Doroshkevich,Shikin,Thorne,Jacobs).

I The interest to the solutions involving the magnetic fields
is not purely academical. The existence of large-scale
magnetic fields in our universe is an important and
enigmatic phenomenon.



I The goal of our work was to describe in detail the
dynamics of the Bianchi-I universe in the presence of the
magnetic field and to analyze it from the point of view of
the new approach to the description of the singularity
crossing.



Bianchi-I universes with a magnetic field

The Lagrangian of the electromagnetic field is

Lem = − 1

16π
FikF

ik .

The energy-momentum tensor of the electromagnetic field is

T i
k =

1

4π

(
−F ilFkl +

1

4
δikFlmF

lm

)
.

If the electric field is absent and the magnetic field has the
only component oriented along the third axes z , then the only
non-zero component of the electromagnetic field tensor Fij is
F12.



One of the Maxwell equations is

F[ij ;k] = 0.

In the spacetime without torsion

F[ij ;k] = 0.

Choosing the triplet of the indices 0, 1, 2 we see that

F12,0 = 0.

That means the the only nonzero component of the two times
covariant electromagnetic field tensor is constant.
The only nonvanishing component of the two times
contravariant electromagnetic field tensor is

F 12 = g 11g 22F12 ∼
1

a2b2
.



The energy-momentum tensor components are:

T 0
0 =

B2
0

a2b2
, T 1

1 = T 2
2 = − B2

0

a2b2
, T 3

3 =
B2
0

a2b2
,

where B2
0 is a positive constant, characterizing the intensity of

the magnetic field.

It is convenient to use the following parametrization of three
scale factors:

a(t) = R(t)eα(t)+β(t),

b(t) = R(t)eα(t)−β(t),

c(t) = R(t)e−2α(t).



Then the components of the Ricci tensor are

R0
0 = −

(
3
R̈

R
+ 6α̇2 + 2β̇2

)
,

R1
1 = −

(
R̈

R
+ 2

Ṙ2

R2
+ 3

Ṙ

R
(α̇ + β̇) + α̈ + β̈

)
,

R2
2 = −

(
R̈

R
+ 2

Ṙ2

R2
+ 3

Ṙ

R
(α̇− β̇) + α̈− β̈

)
,

R3
3 = −

(
R̈

R
+ 2

Ṙ2

R2
− 6

Ṙ

R
α̇− 2α̈

)
.

The scalar curvature is

R = −

(
6R̈

R
+ 6

Ṙ2

R2
+ 6α̇2 + 2β̇2

)
.



The Einstein equations are:

R0
0 −

1

2
R =

B2
0e
−4α

R4
,

R1
1 −

1

2
R = −B2

0e
−4α

R4
,

R2
2 −

1

2
R = −B2

0e
−4α

R4
,

R3
3 −

1

2
R =

B2
0e
−4α

R4
.

Note that in our case the scalar curvature should be equal to
zero.



It is easy to show that

β̇ =
β0
R3
,

just like in the Kasner and in the Heckmann-Schucking
solutions.

We can show that

α̇ =
2Ṙ

R
+
α0

R3
.

Then
B2
0

R4
e−4α =

1

R3

d2R3

dt2
.

Knowing the expression for R we can find the expression for α.
The second time derivative of the R3 should be always
positive.



Combining the preceding equations, we obtain the following
equation for R :

9
Ṙ2

R2
+ 12

α0

R3

Ṙ

R
+ 3

α0

R6
+

1

R3

d2R3

dt2
= 0.

Introducing a new volume variable

V ≡ R3,

we rewrite the preceding equation:

V V̈ + V̇ 2 + 4α0V̇ + 3α2
0 + β2

0 = 0.



Not all the solutions of this equations are the solutions of the
complete system of Einstein and Maxwell equations. The
second derivative of the variable V should be positive. Then

V̈ = − 1

V
(V̇ 2 + 4α0V̇ + 3α2

0 + β2
0).

The variable V should be always nonnegative, thus, the
positivity of V̈ implies the following bounds on the value of
the time derivative of V :

−2α0 −
√
α2
0 − β2

0 ≤ V̇ ≤ −2α0 +
√
α2
0 − β2

0 .

It is possible only if
α2
0 ≥ β2

0 .

If α0 is positive then V̇ is negative and vice versa.



Let us consider the case when α0 ≥ 0, which corresponds to
the contracting universe.
In the vicinity of the singularity the expressions for the three
scale factors are:

a(t) ∼ (t1 − t)
1− α0+β0

2α0−
√

α2
0
−β2

0 ,

b(t) ∼ (t1 − t)
1− α0−β0

2α0−
√

α2
0
−β2

0 ,

c(t) ∼ (t1 − t)
−1− −2α0

2α0−
√

α2
0
−β2

0 .



We can rewrite these expressions in the Kasner form:

a(t) ∼ (t1 − t)p1 ,

b(t) ∼ (t1 − t)p2 ,

c(t) ∼ (t1 − t)p3 ,

where

p1 =
α0 − β0 −

√
α2
0 − β2

0

2α0 −
√
α2
0 − β2

0

< 0,

p2 =
α0 + β0 −

√
α2
0 − β2

0

2α0 −
√
α2
0 − β2

0

> 0,

p3 =

√
α2
0 − β2

0

2α0 −
√
α2
0 − β2

0

> 0.

It is easy to check that the exponents p1, p2 and p3 satisfy the
Kasner relations:

p1 + p2 + p3 = p21 + p22 + p23 = 1.



That means that the presence of the magnetic field does not
change the character of the singularity.
The contribution of the magnetic field into the Einstein
equations:

B2
0

a2b2
=
µ(µ− 1)B1

A
(t2 − t)µ−3.

Here, µ− 3 > −2 and hence this term is weaker than the
terms 1/t2 arising due to the anisotropy and cannot influence
the structure of the singularity.



Expanding universe, α0 < 0, V̇ > 0.
At t →∞

a ∼ tp1 ,

b ∼ tp2 ,

c ∼ tp3 ,

p1 =
−α0 + β0 +

√
α2
0 − β2

0

−2α0 +
√
α2
0 − β2

0

,

p2 =
−α0 − β0 +

√
α2
0 − β2

0

−2α0 +
√
α2
0 − β2

0

,

p3 =
−
√
α2
0 − β2

0

−2α0 +
√
α2
0 − β2

0

.

The exponents again satisfy the Kasner relations.



That means that the presence of the magnetic field does not
influence the structure of the metric at t →∞ and does not
imply the isotropization of the universe, in contrast to the
dust-like matter in the Heckmann-Schucking solution.
The energy density of the magnetic field at t →∞ is

B2

a2b2
=
ν(ν − 1)B2

V2
tν−3,

where ν − 3 < −2 and is weaker than the anisotropy term.
What happens in the distant past, close to the initial
singularity?

p′1 =
−α0 + β0 −

√
α2
0 − β2

0

−2α0 −
√
α2
0 − β2

0

,

p′2 =
−α0 − β0 −

√
α2
0 − β2

0

−2α0 −
√
α2
0 − β2

0

,

p′3 =

√
α2
0 − β2

0

−2α0 −
√
α2
0 − β2

0

.



To establish the relation between the set of the Kasner indices
at the beginning and at the end of the evolution, it is
convenient to use the Lifshitz-Khalatnikov parametrization. If

p1 ≤ p2 ≤ p3,

then they can represented by means of a real parameter
u ≥ 1:

p1 = − u

1 + u + u2
,

p2 =
1 + u

1 + u + u2
,

p3 =
u(1 + u)

1 + u + u2
.



If we choose the following anisotropy parameters:

α0 < 0, β0 < 0, |β0| <
3

5
|α0|,

then

u =
1 + u′

u′
< 2.

Inversely,

u′ =
1

u − 1
.



The evolution towards singularity includes two transformations.
During the first transformation the parameter u′ undergoes the
shift u → u − 1 and the roles of the axes, characterized by the
exponents p1 and p3, are exchanged.
This transformation is called “change of the Kasner epoch” by
BKL. As a result of this transformation we arrive to the value
of the parameter u − 1 which is less than 1.
The next transformation called “change of Kasner era” makes
u − 1→ 1

u−1 .
This transformation exchanges the roles of the axes 2 and 3.



When the relation between the parameters α0 and β0 is
opposite:

α0 < 0, β0 < 0, 1 > |β0| >
3

5
|α0|,

we have
u = u′ + 1,

or, inversely,
u′ = u − 1,

and we have only a change of the Kasner epoch.



Remarkably, the transition between two Kasner regimes in the
model with magnetic field is characterized by the same law as
in the case of an empty Bianchi-II universe.

In the case of Bianchi-IX or Bianchi-VIII models the universe
passes through an infinite series of the changes of the Kasner
epochs and eras.



Bianchi-I universes with a magnetic field and a perfect fluid
I. Dust

ρ =
ρ0
abc

=
ρ0
R3

=
ρ0
V
,

When the universe is close to the singularity, the influence of
terms, proportional to ρ0 is negligible and we have a Kasner
type singularity with a positive Kasner exponent corresponding
to the axis along which the magnetic field is directed.

When the volume of the universe grows and tends to the
infinity, we encounter an opposite situation. The term 3ρ0t

2

dominates, V ∼ t2 and we have the isotropization just like in
the standard Heckmann-Schucking solution.



II. Massless scalar field - stiff matter

The Klein-Gordon equation for the massless scalar field in the
Bianchi-I universe has the form

φ̈ + 3
Ṙ

R
φ̇ = 0.

Its solution is

φ̇ =
φ̃0

R3
=
φ̃0

V
.

T 0
0 =

φ2
0

V 2
,

T 1
1 = T 2

2 = T 3
3 = − φ

2
0

V 2
.



That means that in all the formulas for the empty space we
should substitute β2

0 → β2
0 + φ2

0.

a(t) ∼ tp1 ,

b(t) ∼ tp2 ,

c(t) ∼ tp3 ,

p1 =
−α0 + β0 −

√
α2
0 − β2

0 − φ2
0

−2α0 −
√
α2
0 − β2

0 − φ2
0

,

p2 =
−α0 − β0 −

√
α2
0 − β2

0 − φ2
0

−2α0 −
√
α2
0 − β2

0 − φ2
0

,

p3 =

√
α2
0 − β2

0 − φ2
0

−2α0 −
√
α2
0 − β2

0 − φ2
0

.



The Kasner relations are changed:

p1 + p2 + p3 = 1,

p21 + p22 + p23 = 1− q2,

q2 =
2φ2

0

4α2
0 + 4α0

√
α2
0 − β2

0 − φ2
0 + α2

0 − β2
0 − φ2

0

.



0 ≤ q2 <
1

2
.

In the case of the universe filled only with the massless scalar
field the bound on the parameter q2 is less stringent:

0 ≤ q2 ≤ 2

3
.

The presence of the parameter q2 indicates some kind of the
isotropization of the universe.
The limiting value q2 = 2

3
means that p1 = p2 = p3 = 1

3
, i.e.

that the expansion of the universe is totally isotropic.
The presence of the magnetic field makes such a high degree
of the isotropization impossible.



The expressions for the Kasner exponents of the universe when
its volume tends to infinity:

p′1 =
−α0 + β0 +

√
α2
0 − β2

0 − φ2
0

−2α0 +
√
α2
0 − β2

0 − φ2
0

,

p′2 =
−α0 − β0 +

√
α2
0 − β2

0 − φ2
0

−2α0 +
√
α2
0 − β2

0 − φ2
0

,

p′3 =
−
√
α2
0 − β2

0 − φ2
0

−2α0 +
√
α2
0 − β2

0 − φ2
0

.

(p′1)2 + (p′2)2 + (p′3)2 = 1− q′2,

q′2 =
2φ2

0

4α2
0 − 4α0

√
α2
0 − β2

0 − φ2
0 + α2

0 − β2
0 − φ2

0

< q2.

When we go from the singularity towards an infinite expansion
the value of the parameter q2 decreases and hence, the level of
the anisotropy increases in contrast to the isotropization
induced by the presence of dust in the Heckmann-Schucking
solution.



How to cross the singularity?

Recently some approaches to the problem of the description of
the singularity crossing were elaborated. Behind these
approaches there are basically two general ideas.
Firstly, to cross the singularity one must give a prescription
matching non-singular, finite quantities before and after such a
crossing.
Secondly, such a description can be achieved by using a
convenient choice of field parametrization.

Some realization of these ideas works for our case.



Conclusions

I Studying Bianchi - I spacetimes one can discover a lot of
interesting phenomena.

I An interesting problem: is it possible to construct a
Bianchi-I universe with a magnetic field which is not
oriented along of the main axes?


