Subdominant spin effects in blackhole binaries

Viola De Renzis

University of Milano Bicocca

XXV SIGRAV Conference on General Relativity and Gravitation

> September, 3-8 Trieste, Italy

Outline

Overview of two subdominant spin effects in current and future LIGO/Virgo data:

Detecting the signature imprinted by **two precessing spins** on the emitted GW signal using a carefully designed estimator

[De Renzis+, PRD, 2022]

Prospects for **detecting unstable binaries** which formed with aligned spins but enter the detector sensitivity window in precessing configurations

momentum

Spin angular momentum

Spin angular momentum

Misaligned spins→ spin precession

Spin angular momentum

Aligned spins \rightarrow no precession

Four equilibrium solution to the relativistic spin-precession equation:

Outline

Overview of two subdominant spin effects in current and future LIGO/Virgo data:

Detecting the signature imprinted by **two precessing spins** on the emitted GW signal using a carefully designed estimator

[De Renzis+, PRD, 2022]

I.

Prospects for **detecting unstable binaries** which formed with aligned spins but enter the detector sensitivity window in precessing configurations

[De Renzis+, PRD, 2023]

Effective spin parameters

 $\overrightarrow{\chi_{12}} = \overrightarrow{S_{12}} / m_{12}^2$ $q = m_2 / m_1$

Alignment information:

$$\chi_{\rm eff} = \frac{m_1 \overrightarrow{\chi_1} + m_2 \overrightarrow{\chi_2}}{m_1 + m_2} \cdot \hat{L}$$

- Only aligned spin components (Damour 2001)
- Constant of motion at 2PN (Racine 2006)

Precessing spin parameter

$$\chi_{\rm p} = \max\left(\chi_1\sin\theta_1, q\frac{4q+3}{(4+3q)}\chi_2\sin\theta_2\right)$$

- In-plane spin components (Schmidt+ 2015)
- Used in current GW analysis

Effective spin parameters

 $\overrightarrow{\chi_{12}} = \overrightarrow{S_{12}} / m_{12}^2$ $q = m_2 / m_1$

Alignment information:

$$\chi_{\rm eff} = \frac{m_1 \overrightarrow{\chi_1} + m_2 \overrightarrow{\chi_2}}{m_1 + m_2} \widehat{(L)}$$

- Only aligned spin components (Damour 2001)
- Constant of motion at 2PN (Racine 2006)

Precessing spin parameter

$$\chi_{\rm p} = \max\left(\chi_1\sin\theta_1, q\frac{4q+3}{(4+3q)}\chi_2\sin\theta_2\right)$$

- In-plane spin components (Schmidt+ 2015)
- Used in current GW analysis

Effective spin parameters

$\overrightarrow{\chi_{12}} = \overrightarrow{S_{12}} / m_{12}^2$ $q = m_2 / m_1$

Alignment information:

$$\chi_{\rm eff} = \frac{m_1 \overrightarrow{\chi_1} + m_2 \overrightarrow{\chi_2}}{m_1 + m_2} \widehat{(L)}$$

- Only aligned spin components (Damour 2001)
- Constant of motion at 2PN (Racine 2006)

Precessing spin parameter

$$\chi_{\rm p} = \max\left(\chi_1 \sin\theta_1, q \frac{4q+3}{(4+3q)}\chi_2 \sin\theta_2\right)$$

- In-plane spin components (Schmidt+ 2015)
- Used in current GW analysis

Averaged vs Heuristic χ_p

 $\theta_1, \theta_2, \phi_{12}$ all vary on the precession timescale! (Kesden+ 2015,Gerosa+ 2015)

Averaged vs Heuristic χ_p

 $\theta_1, \theta_2, \phi_{12}$ all vary on the precession timescale! (Kesden+ 2015,Gerosa+ 2015)

Is it possible to detect two-spin effects with the new averaged definition of χ^{av}_p?

Full parameter estimation with BILBY

Bayesian inference framework for parameter estimation

Parameter describing a BBH merger

8 intrinsic parameters: $m_1, m_2, \chi_1, \chi_2, \theta_1, \theta_2, \phi_{12}, \phi_{JL}$

7 extrinsic parameters: d_L , ra, dec, ψ , ϕ , θ_{JN} , t_C

Settings for the injections

Detectors: *H,L,V (O4)* Gaussian noise: no Detector arguments: $f_{ref} = 20.0$ Hz $f_{min} = 20.0$ Hz $f_{sampling} = 2048.0$ Hz duration = 4s Injection and recovery waveform: *IMRPhenomXPHM* Priors: *Standard BBH priors* Sampler: dynesty

Recovery of χ_p

q=0.96

IMRPhenomXPHM Standard BBH priors

VARIABLE PARAMETERS:

- Source frame masses
 M^{source}_{1,2}
- D_L = [200, 500, 700, 900, 1300, 1700] Mpc
 → SNR=[124, 44, 35, 27, 19, 14]

FIXED PARAMETERS:

- Detector-frame masses. $M_{1,2}^{det} = [27.6, 26.5]$ \rightarrow Average $\chi_p^{inj} = 1.22$ \rightarrow Heuristic $\chi_p^{inj} = 0.67$
- All the other parameters are fixed

Parameter estimation analysis for 100 injections

METHOD I: take samples for all the 15 parameters from the standard BBH priors

Parameter estimation analysis for 100 injections

METHOD I: take samples for all the 15 parameters from the standard BBH priors

METHOD II: 1. reweight the samples for the intrinsic parameters drawn from the standard BBH priors in order to obtain a uniform distribution of $\chi_p \in [0, 2]$ 2. select the extrinsic parameters such that SNR>20

Can we recover two spin-effects with $\chi_p^{\rm av}$?

If there is an event with two misaligned spins, can we tell?

- For the majority of the injections we are able to detect two precessing spins.
- Even for the most extreme case, the 90% C.I. is over the horizontal line $\chi_p = 1$
- The bias at $\chi_p \sim 2$ is due to the low prior tail at $\chi_p > 1$.

LVK will potentially be able to detect two-spin effects in the next observing runs!

From now on we will deal only with the averaged χ_p estimator

Can we recover two spin-effects with χ_p^{av} ?

If there is an event with two misaligned spins, can we tell?

- For the majority of the injections we are able to detect two precessing spins.
- Even for the most extreme case, the 90% C.I. is over the horizontal line $\chi_p = 1$
- The bias at $\chi_p \sim 2$ is due to the low prior tail at $\chi_p > 1$.

LVK will potentially be able to detect two-spin effects in the next observing runs!

Can we recover two spin-effects with $\chi_p^{\rm av}$?

If there is an event with two misaligned spins, can we tell?

- For the majority of the injections we are able to detect two precessing spins.
- Even for the most extreme case, the 90% C.I. is over the horizontal line $\chi_p = 1$
- The bias at $\chi_p \sim 2$ is due to the low prior tail at $\chi_p > 1$.

LVK will potentially be able to detect two-spin effects in the next observing runs!

Statistical bias at $\chi_p > 1$

Outline

Overview of two subdominant spin effects in current and future LIGO/Virgo data:

Detecting the signature imprinted by **two precessing spins** on the emitted GW signal using a carefully designed estimator

[De Renzis+, PRD, 2022]

Prospects for **detecting unstable binaries** which formed with aligned spins but enter the detector sensitivity window in precessing configurations

[De Renzis+, PRD, 2023]

Aligned spins \rightarrow no precession

Four equilibrium solution to the relativistic spin-precession equation:

Do aligned binaries remain aligned?

Kidder, 1995 Gerosa+, 2015 Mould and Gerosa, 2020 Aligned **up-down** binaries are **unstable** to spin precession and can enter the LIGO band with misaligned spins

Up-down precessional instability

Only **up-down** binaries are **unstable**

The **critical radius** that define the onset of the instability is

$$\mathbf{r}_{+} = \frac{(\sqrt{\chi_{1}} + \sqrt{q\chi_{2}})^{4}}{(1-q)^{2}}M$$

Mould and Gerosa, 2020

What is the endpoint of the up-down instability?

Mould and Gerosa, 2020

What is the endpoint of the up-down instability?

Mould and Gerosa, 2020
Say an unstable up-down binary enters the LIGO band in its endpoint ... can we tell this binary used to be aligned?

Say an unstable up-down binary enters the LIGO band in its endpoint ... can we tell this binary used to be aligned?

Full parameter estimation with BILBY

$$\vec{\theta} = \{m_1, m_2, \chi_1, \chi_2, \theta_1 = \theta_{ud}, \theta_2 = \theta_{ud}, \phi_{12} = 0\} \phi_{JL}, d_L, ra, dec, \psi, \phi, \theta_{JN}, t_C\}$$

The signals are injected in the endpoint of the up-down instability

 $\hat{z} = \hat{L}$

Settings for the injections

Detectors: *H*, *L*, *V* (*O*4) Gaussian noise: no Detector arguments: $f_{ref} = 20.0$ Hz $f_{min} = 20.0$ Hz $f_{sampling} = 2048.0$ Hz duration = 4s Injection and recovery waveform: *IMRPhenomXPHM* Priors: *Standard BBH priors* Sampler: dynesty

Bayesian inference framework for parameter estimation

Model selection

Given the observed data *d* and two competing models *M*_{*A*} and *M*_{*B*} and assuming equal model priors, the **Bayes' factor** is:

Evidence (or ma

$$Z(d|M_i) = \int d\theta P(d|\vec{\theta}, M_i) \pi(\vec{\theta}|M_i)$$

Bayes' Theorem

$$P(d|\vec{\theta}, M_i) = \frac{\mathcal{L}(d|\vec{\theta}, M_i)\pi(\vec{\theta}|M_i)}{\mathbb{Z}(d|M_i)}$$

Model selection

Narrow model
$$\mathcal{H}_N \in \mathcal{H}_B$$
: 12 parameters $\rightarrow \overrightarrow{\theta_B} = \{ \phi, \overline{\gamma} = 0 \}$

Driginally aligned
BBH
 $\overline{\gamma} = \{ \gamma_1, \gamma_2, \gamma_3 \} = \{ 0, 0, 0 \}$

We just need the broad model \mathcal{H}_B to compute the Bayes factor

Injection for a single event

Backpropagation to 0 Hz

Backpropagation to 0 Hz

Recovery at different SNR

 $D_L = [2538, 1268, 845, 634, 508, 338, 233] \text{ Mpc} \\ \rightarrow \text{SNR} = [20, 40, 60, 80, 100, 150, 217]$

- As expected, the Bayes factor increases for higher SNR
- For this particular set of parameter, we recover a strong evidence in favor of H_N at SNR > 60

Jenney State	
$\ln B_{1,2}$	Strength of evidence
<1.0	inconclusive
1.0 - 2.5	weak
2.5 - 5.0	moderate
> 5.0	strong

Inffrou coalo

Injection campaign

150 synthetic GW signals injected in the endpoint of the up-down instability

I. The **intrinsic parameters** are choosen from the standard priors such that the critical radius r_+ satisfies the condition

 $r_{+} - r(20 Hz) > 200$ where

 $r_{+} = \frac{\left(\sqrt{\chi_{1}} + \sqrt{q\chi_{2}}\right)^{4}}{(1-q)^{2}} M$

Say an unstable up-down binary enters the LIGO band in its endpoint ... can we tell this binary used to be aligned?

Real data (GWTC-3)

- 69 events of BBH coalescences (BNS excluded)
 - FAR < $1yr^{-1}$ in at least one search

Conclusions

WHERE WE ARE NOW

- Moderate evidence for spin precession in individual events
- Collective evidence for spin precession at the population level (LIGO 2021)
- More accurate spin measurement in 04.

NEXT

TWO PRECESSING SPINS

- We found out that, if the SNR is high enough (>20), LIGO, Virgo and KAGRA will potentially be able to detect two-spin effect in the next observing run (O4).
- > No false positive cases.

UP-DOWN BINARIES

- High sensitivity is a necessary but not sufficient condition for the up-down origin to be distinguishable
- Possible mechanism for the formation of precessing binaries in environments where sources are preferentially formed with (anti) aligned spins.

PUBLICY AVAILABLE POSTERIORS:

github.com/ViolaDeRenzis/twoprecessingspins github.com/ViolaDeRenzis/updowninjections

Thanks for the attention!

BACK-UP SLIDES

Up-down

Recovery at different SNR

Injection campaign

150 synthetic GW signals injected in the endpoint of the up-down instability

I. The **intrinsic parameters** are choosen from the standard priors such that the critical radius r_+ satisfies the condition

 $r_{+} - r(20 Hz) > 200$ where

 $r_{+} = \frac{\left(\sqrt{\chi_{1}} + \sqrt{q\chi_{2}}\right)^{4}}{(1-q)^{2}} M$

Effect of higher modes

150 synthetic GW signals injected in the endpoint of the up-down instability

I. The **intrinsic parameters** are choosen from the standard priors such that the critical radius r_+ satisfies the condition

 $r_{+} - r(20 Hz) > 200$ where

 $r_{+} = \frac{\left(\sqrt{\chi_{1}} + \sqrt{q\chi_{2}}\right)^{4}}{(1-q)^{2}} M$

Injection campaign

150 synthetic GW signals injected in the endpoint of the up-down instability

I. The **intrinsic parameters** are choosen from the standard priors such that the critical radius r_+ satisfies the condition

$$r_{+} - r(20 Hz) > 200$$
 where

$$r_{+} = \frac{\left(\sqrt{\chi_{1}} + \sqrt{q\chi_{2}}\right)^{4}}{(1-q)^{2}} M$$

Real data (GWTC-3)

- 69 events of BBH coalescences (BNS excluded)
 - FAR < $1yr^{-1}$ in at least one search

Priors

- Nested model $\mathcal{H}_{N}: \mathcal{H}_{B} \land \gamma = \gamma_{N}(\varphi)$ where φ are the common parameters
- Bayes factor: $\mathcal{B} = \frac{\mathcal{Z}(d|\mathcal{H}_{N})}{\mathcal{Z}(d|\mathcal{H}_{B})}$
- Evidence for the nested model: 2

$$\mathcal{Z}(d|\mathcal{H}_{N}) = \int \mathcal{L}(d|\varphi, \mathcal{H}_{N}) \pi(\varphi|\mathcal{H}_{N}) d\varphi$$

$$= \int \mathcal{L}(d|\varphi, \gamma = \gamma_{N}(\varphi), \mathcal{H}_{B}) \pi(\varphi|\gamma = \gamma_{N}(\varphi), \mathcal{H}_{B}) d\varphi$$
Bayes' theorem
$$\frac{p(\varphi, \gamma = \gamma_{N}(\varphi)|d, \mathcal{H}_{B})\mathcal{Z}(d|\mathcal{H}_{B})}{\pi(\varphi, \gamma = \gamma_{N}(\varphi)|\mathcal{H}_{B})}$$

$$\mathcal{B} = \frac{\mathcal{Z}(d|\mathcal{H}_{\mathrm{N}})}{\mathcal{Z}(d|\mathcal{H}_{\mathrm{B}})} = \int \mathrm{d}\varphi \, p(\varphi, \gamma = \gamma_{\mathrm{N}}(\varphi)|d, \mathcal{H}_{\mathrm{B}}) \frac{\pi(\varphi|\gamma = \gamma_{\mathrm{N}}(\varphi), \mathcal{H}_{\mathrm{B}})}{\pi(\varphi, \gamma = \gamma_{\mathrm{N}}(\varphi)|\mathcal{H}_{\mathrm{B}})}$$

$$\mathcal{B} = \frac{\mathcal{Z}(d|\mathcal{H}_{\mathrm{N}})}{\mathcal{Z}(d|\mathcal{H}_{\mathrm{B}})} = \int \mathrm{d}\varphi \, p(\varphi, \gamma = \gamma_{\mathrm{N}}(\varphi)|d, \mathcal{H}_{\mathrm{B}}) \frac{\pi(\varphi|\gamma = \gamma_{\mathrm{N}}(\varphi), \mathcal{H}_{\mathrm{B}})}{\pi(\varphi, \gamma = \gamma_{\mathrm{N}}(\varphi)|\mathcal{H}_{\mathrm{B}})}$$

Rule of conditional probability
$$\pi(\gamma = \gamma_{\mathrm{N}}(\varphi)|\mathcal{H}_{\mathrm{B}}) = \int \pi(\varphi', \gamma = \gamma_{\mathrm{N}}(\varphi)|\mathcal{H}_{\mathrm{B}}) \mathrm{d}\varphi'$$

The general expression for the Bayes factor in the case of nested models is:

$$\mathcal{B} = \int \frac{p(\varphi, \gamma = \gamma_{\rm N}(\varphi) | d, \mathcal{H}_{\rm B})}{\int \pi(\varphi', \gamma = \gamma_{\rm N}(\varphi) | \mathcal{H}_{\rm B}) \mathrm{d}\varphi'} \, \mathrm{d}\varphi$$

From here, we can recover the classic expression for the Savage Dickey ratio

We can perform a suitable change of variables:

$$\{\varphi,\gamma\}\longrightarrow\{\bar{\varphi}=\varphi,\bar{\gamma}=\gamma-\gamma_{\mathrm{N}}(\varphi)\}$$

The determinant of the resulting Jacobian is

$$\det \begin{pmatrix} \partial \bar{\varphi} / \partial \varphi & \partial \bar{\varphi} / \partial \gamma \\ \partial \bar{\gamma} / \partial \varphi & \partial \bar{\gamma} / \partial \gamma \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ -d\gamma_{\rm N} / d\varphi & 1 \end{pmatrix} = 1$$

such that, for any probability distribution P, one can write

Case of the updown instability

We perform the following change of variables:

 $\{q, \chi_1, \chi_2, \theta_1, \theta_2, q\} \rightarrow \{q, \chi_1, \chi_2, \gamma_1, \gamma_2, \gamma_3\}$

where

The up-down instability is mapped in the point $\gamma = \{0,0,0\}$ and the Bayes factor can be computed as

$$\mathcal{B}= egin{array}{c} p(ar{\gamma}=0|d,\mathcal{H}_{ ext{B}}) \ \pi(ar{\gamma}=0|\mathcal{H}_{ ext{B}}) \end{array}$$

Multi-timescale analysis

- Orbital timescale: $t_{orb} \sim r^{3/2}$
- Precession timescale: $t_{pre} \sim r^{5/2}$
- Radiation-reaction timescale: $t_{RR} \sim r^4$

In the post-Newtonian regime (large separations):

$$r \gg M \longrightarrow t_{orb} \ll t_{pre} \ll t_{RR}$$

Each part of the binary dynamics can be addressed independently

Multi-timescale analysis

$$t_{orb} \ll t_{pre} \longrightarrow$$

Study precession in BBHs averaging the motion over the orbital period

• 2PN orbit-averaged spin precession equations

$$\frac{d\mathbf{S_i}}{dt} = \mathbf{\Omega_i} \times \mathbf{S_i}$$

$$\frac{d\mathbf{L}}{dt} = (\mathbf{\Omega}_{\mathbf{L}} \times \hat{L})L + \frac{dL}{dt}\hat{\mathbf{L}}$$

[Damour, 2008]

$$\begin{aligned} \mathbf{\Omega}_L &= \Omega_1 \chi_1 \hat{\mathbf{S}}_1 + \Omega_2 \chi_2 \hat{\mathbf{S}}_2 \\ \Omega_1 &= \frac{M^2}{2r^3(1+q)^2} \left[4 + 3q - \frac{3q\chi_{\text{eff}}}{(1+q)} \frac{M^2}{L} \right] \\ \Omega_2 &= \frac{qM^2}{2r^3(1+q)^2} \left[4q + 3 - \frac{3q\chi_{\text{eff}}}{(1+q)} \frac{M^2}{L} \right] \end{aligned}$$

• **9D problem:** 2 spin vectors and 1 orbital vector

Dimensionality reduction

- **9D problem:** 2 spin vectors and 1 orbital vector
- **7D:** 2 BH spin magnitudes are conserved
- **4D**: choose a reference frame
- **3D**: χ_{eff} is a conserved quantity a 2PN

• 1D problem: two additional conserved quantities on the short precessional timescale

$$\frac{dL}{dt} = 0 \rightarrow L = |L|$$
$$J = |L + S_1 + S_2|$$

Motion on the precession timescale

 $t_{orb} \ll t_{pre} \ll t_{RR}$

The entire precessional dynamics can be parametrized with a single variable, the total spin magnitude

$$S = |S_1 + S_2|$$

[Kesden, 2015]

Perturbation of the aligned configurations

• Small perturbations to aligned-spin configurations evolve as an **harmonic oscillator**

$$\frac{d^2}{dt^2}(S^2 - S_*^2) + \omega^2(S^2 - S_*^2) \simeq 0$$

STABILITY?

- \succ Real frequency $ω^2 > 0$ → small amplitude oscillations (stable configuration)
- ≻ If $\omega^2 > 0 \rightarrow S^2$ = const → onset of the instability
- \succ Imaginary frequency $ω^2 < 0$ → dynamical instability

Spin-orbit resonances

• Spin-orbit resonances: the three angular momenta remain coplanar

 $\Delta \Phi = 0, \pi$

 $M_B \in M_A$

Model
$$M_B$$
: 12 parameters $\rightarrow \overrightarrow{\theta_B} = \phi$ and $\delta = \{\theta_1, \theta_2, \phi_{12}\} = \delta_0$

$$Z(d \mid M_B) = \int d\phi P(d \mid \phi, M_B) \pi (\phi \mid M_B) =$$
$$= \int d\phi P(d \mid \phi, \delta = \delta_0, M_A) \pi (\phi \mid \delta = \delta_0, M_A) = P(d \mid \delta = \delta_0, M_A)$$

 $M_B \in M_A$

$$Z(d \mid M_B) = \int d\phi P(d \mid \phi, M_B) \pi (\phi \mid M_B) =$$

= $\int d\phi P(d \mid \phi, \delta = \delta_0, M_A) \pi (\phi \mid \delta = \delta_0, M_A) = P(d \mid \delta = \delta_0, M_A)$

By Bayes' theorem we can rewrite this last line (which has the shape of a likelihood) as

$$P(d|\delta = \delta_0, M_A) = \frac{P(\delta = \delta_0 | d, M_A) Z(d|M_A)}{\pi(\delta = \delta_0 | M_A)}$$

$$Z(d \mid M_B) = \frac{P(\delta = \delta_0 \mid d, M_A) Z(d \mid M_A)}{\pi(\delta = \delta_0 \mid M_A)}$$
Savage-Dickey Ratio for nested models

$$M_B \in M_A$$

Bayes factor: $BF = \frac{Z(d | M_B)}{Z(d | M_A)} =$
$$= Z(d | M_B) \cdot \frac{1}{Z(d | M_A)} =$$
$$= Z(d | M_B) \cdot \frac{1}{Z(d | M_A)} =$$
$$= \frac{P(\delta = \delta_0 | d, M_A) Z(d | M_A)}{P(\delta = \delta_0 | M_A)} \cdot \frac{1}{Z(d | M_A)} =$$
$$= \frac{P(\delta = \delta_0 | d, M_A) Z(d | M_A)}{P(\delta = \delta_0 | M_A)} \cdot \frac{1}{Z(d | M_A)} =$$
$$= \frac{P(\delta = \delta_0 | d, M_A)}{P(\delta = \delta_0 | M_A)}$$

Two precessing spins

Statistical bias at $\chi_p > 1$

Prior effects: standard BBH priors

Prior effects

Waveform systematics

PhenX=IMRPhenomXPHM PhenT=IMRPhenomTPHM NRSur=NRSur7dq4

	$\chi_{\rm p}^{\rm inj} = 0.43$	$\chi_{\rm p}^{\rm inj} = 1.57$
М	$131.1 M_{\odot}$	$130.8 M_{\odot}$
SNR (PhenX)	107.3	90.3
SNR (PhenT)	93.6	81.7
SNR (NRSur*)	100.2	75.6

High total mass → short signal
 → weaker precession signature

$$SNR\left(\chi_{\rm p}^{\rm inj}=0.43
ight)>SNR\left(\chi_{\rm p}^{\rm inj}=1.57
ight)$$

Waveform systematics

Waveform systematics

Two spin-effects in real data

GW detections (GWTC-3)

2015: first GW detection

Observing runs O1: 2015-2016 O2: 2016-2017 O3: 2019-2020 O4: March 2023

Total number of events is now **90**

- Binary black holes (BBH)
 Binary neutron stars (BNS)
- Neutron star–black hole binaries (NSBH)

(LVK Collaboration)

Spin precession in individual events

Moderate evidence for highly precessing spins in GWTC-3.

Promising candidates for spin precession:

> GW190521

(potential degeneracies with the eccentricity [Romero-Shaw et al. 2020])

➢ GW200129

[Hannam et al. 2021] (possible issues in the glitch mitigation analysis [Payne et al. 2021])

(LVK Collaboration)

Standard spin priors

prior = {		
<pre>'chirp_mass</pre>	' : bilby.gw.prior.UniformInComponentsChirpMass(name='chirp_mass', minimum=10, maximum=60),	
'mass_ratio	' : bilby.gw.prior.UniformInComponentsMassRatio(name='mass_ratio', minimum=0.125, maximum=1),	
'mass_1'	: bilby.gw.prior.Constraint(name='mass_1', minimum=5, maximum=100),	
'mass_2'	: bilby.gw.prior.Constraint(name='mass_2', minimum=5, maximum=100),	Sping uniform in magnitudes
'a_1'	: bilby.prior.analytical.Uniform(name='a_1', minimum=0, maximum=0.99),	Spins uniform in magnitudes
'a_2'	: bilby.prior.analytical.Uniform(name='a_2', minimum=0, maximum=0.99), $p(\chi)u\chi \propto u\chi$	and isotropic in directions
'tilt_1'	: bilby.prior.analytical.Sine(name='tilt_1'),	and isotropic in unections
'tilt_2'	: bilby.prior.analytical.Sine(name='tilt_2'),	
'phi_12'	: bilby.prior.analytical.Uniform(name='phi_12', minimum=0, maximum=2 * np.pi, boundary='periodic'),	
'phi_jl'	: bilby.prior.analytical.Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi, boundary='periodic'),	
'luminosity	_distance' : bilby.gw.prior.UniformSourceFrame(name='luminosity_distance', minimum=1e2, maximum=5e3,	
unit='Mpc')		
'dec'	: bilby.prior.analytical.Cosine(name='dec'),	
'ra'	: bilby.prior.analytical.Uniform(name='ra', minimum=0, maximum=2 * np.pi, boundary='periodic'),	
'theta_jn'	: bilby.prior.analytical.Sine(name='theta_jn'),	
'psi' : bilby.prior.analytical.Uniform(name='psi', minimum=0, maximum=np.pi, boundary='periodic'),		
'phase' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic')		
}		

Volumetric spin priors

<pre>prior = { 'mass_1' : bilby.gw.prior.Constraint(name='mass_1', minimum=5, maximum=100), 'mass_2' : bilby.gw.prior.UniformInComponentsChirpMass(name='thirp_mass', minimum=10, maximum=60), 'mass_ratio' : bilby.gw.prior.UniformInComponentsChirpMass(name='thirp_mass', minimum=0.125, maximum=1), 'mass_ratio' : bilby.prior.analytical.Sine(name='tilt_1'), 'mass_ratio' : bilby.prior.analytical.Sine(name='tilt_2'), 'phi_12' : bilby.prior.analytical.Uniform(name='phi_12', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phi_12' : bilby.prior.analytical.Uniform(name='phi_1), 'minimum=0, maximum=2 * np.pi, boundary='periodic'), 'uminosity_distance' : bilby.prior.analytical.Cosine(name='dec'), 'ra' : bilby.prior.analytical.Cosine(name='ra', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'thet_jn' : bilby.prior.analytical.Uniform(name='pas', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phi_12 : bilby.prior.analytical.Uniform(name='ra', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'thet_jn' : bilby.prior.analytical.Cosine(name='dec'), 'ra' : bilby.prior.analytical.Uniform(name='ra', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phi' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phi' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phi' : bilby.prior.analytical.Uniform(name='pase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phi' : bilby.prior.analytical.Uniform(name='pase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phase' : bilby.prior.analytical.Uniform(name='pase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phase' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phase' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'phase' : bilby.prior.analytical.Uniform(name='phase', mini</pre>
<pre>'psi' : bilby.prior.analytical.Uniform(name='psi', minimum=0, maximum=np.pi, boundary='periodic'), 'phase' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic'), 'geocent time' : bilby.core.prior.Uniform(minimum=-0.1, maximum=0.1, name='geocent time', latex label='\$t c\$'.</pre>
unit='\$s\$') }

Uninformative BBH priors

Intrinsic parameters

prior = { 'chirp mass' : bilby.gw.prior.UniformInComponentsChirpMass(name='chirp mass', minimum=10, maximum=60), 'mass_ratio' : bilby.gw.prior.UniformInComponentsMassRatio(name='mass_ratio', minimum=0.125, maximum=1), : bilby.gw.prior.Constraint(name='mass_1', minimum=5, maximum=100), 'mass_1' Uniform mass prior $m_{1,2} \in [5,100] M_{\odot}$: bilby.gw.prior.Constraint(name='mass_2', minimum=5, maximum=100), 'mass_2' : bilby.prior.analytical.Uniform(name='a_1', minimum=0, maximum=0.99), 'a_1' : bilby.prior.analytical.Uniform(name='a 2', minimum=0, maximum=0.99), 'a_2' 'tilt_1' : bilby.prior.analytical.Sine(name='tilt_1'), 'tilt_2' : bilby.prior.analytical.Sine(name='tilt_2'), 'phi_12' : bilby.prior.analytical.Uniform(name='phi 12', minimum=0, maximum=2 * np.pi, boundary='periodic'),

'phi_jl' : bilby.prior.analytical.Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi, boundary='periodic'),

Uninformative BBH priors

Intrinsic parameters

Uninformative BBH priors

Extrinsic parameters

'luminosity_distance' : bilby.gw.prior.UniformSourceFrame(name='luminosity_distance', minimum=1e2, maximum=5e3, unit='Mpc'), 'dec' : bilby.prior.analytical.Cosine(name='dec'),

'ra' : bilby.prior.analytical.Uniform(name='ra', minimum=0, maximum=2 * np.pi, boundary='periodic'),

'theta_jn' : bilby.prior.analytical.Sine(name='theta_jn'),

'psi' : bilby.prior.analytical.Uniform(name='psi', minimum=0, maximum=np.pi, boundary='periodic'),

'phase' : bilby.prior.analytical.Uniform(name='phase', minimum=0, maximum=2 * np.pi, boundary='periodic')

• Luminosity distance uniform in comoving volume $D_L \in [100,5000]$ Mpc

Dataset of 100 injections: mass ratio *q*

High $\chi_p \rightarrow \text{mass ratio} \sim 1 \rightarrow \text{High SNR}$

χ_p calculation

Amount of relativistic precession:

$$\left|\frac{d\hat{\mathbf{L}}}{dt}\right|^{2} = \left(\Omega_{1}\chi_{1}\sin\theta_{1}\right)^{2} + \left(\Omega_{2}\chi_{2}\sin\theta_{2}\right)^{2} + 2\Omega_{1}\Omega_{2}\chi_{1}\chi_{2}\sin\theta_{1}\sin\theta_{2}\cos\Delta\Phi$$

Heuristic
$$\chi_p$$
:

$$\chi_p^{\text{heu}} = \frac{1}{2\Omega_1} \left(\left| \frac{d\hat{L}}{dt} \right|_+ + \left| \frac{d\hat{L}}{dt} \right|_- \right) = \max \left(\chi_1 \sin\theta_1, q \frac{4q+3}{(4+3q)} \chi_2 \sin\theta_2 \right)$$

Aritmetic heuristic mean between two configurations: $cos\Delta \Phi = \pm 1$ normalized with Ω_1

Two problems:

- I. The configurations are not always geometrically possible
- II. The angles $\theta_1, \theta_2, \Delta \Phi$ all vary on the precession timescale.

How to fix the problems with heuristic χ_p ?

I. Generalized $\chi_p \rightarrow$ Retain all the variation occurring on the precession timescale

$$\chi_{p}^{\text{gen}} = \frac{1}{\Omega_{1}} \left(\left| \frac{d\hat{L}}{dt} \right| \right) = \left[(\chi_{1} \sin\theta_{1})^{2} + \left(q \frac{4q+3}{(4+3q)} \chi_{2} \sin\theta_{2} \right)^{2} + 2q \frac{4q+3}{(4+3q)} \chi_{1} \chi_{2} \sin\theta_{1} \sin\theta_{2} \cos\Delta\phi \right]^{1/2}$$
Heuristic χ_{p}
Retain the dependence on $\Delta\Phi$

II. Averaged $\chi_p \rightarrow$ Average all the variation occurring on the precession timescale

$$\left\langle \chi_{p}^{av}\right\rangle = \frac{\int \chi_{p}(\psi) \left(\frac{d\psi}{dt}\right)^{-1} d\psi}{\int \left(\frac{d\psi}{dt}\right)^{-1} d\psi}$$

 ψ = quantity that parametrize the precession cycle (Gerosa+ 2015)

Mass and spin measurements

No hair theorem: **Kerr BHs** are uniquely described by their **mass M** and their **spin S**

- > We can measure with great accuracy the chirp mass: $M_c = \frac{(m_1 m_2)^{3 \setminus 5}}{(m_1 + m_2)^{1 \setminus 5}}$
- Spins provide an highly subdominant contribution to the emitted radiation

Measurements of component spin magnitudes and tilt angles

Spin distribution

The directions of the BH spins are believed to be clean tracers of the astrophysical formation pathway

Dynamical formation channel: isotropically oriented spins (misalignment → spin precession)

[Mandel and Farmer, 2022]