Glitch systematics on the observation of massive black-hole binaries with LISA

Alice Spadaro, R. Buscicchio, D. Vetrugno, A. Klein, D. Gerosa, S. Vitale, R. Dolesi, W. J. Weber, M. Colpi

arXiv:2306.03923

September 4th 2023 - Trieste

XXV SIGRAV Conference on General Relativity and Gravitation

Contents

I. The Laser Interferometer Space Antenna (LISA) and astrophysical sources

II. Noise transients

III. LISA data analysis

IV. Results

LISA & Astrophysics

- ESA mission planned to be launched in ~2034
- Gravitational-waves detection from space

Monochromatic sources + drifting sources + chirping sources...and more

LISA: astronomical observatory of unprecedented range!

[1702.00786] Laser Interferometer Space Antenna

LISA & Astrophysics

- ESA mission planned to be launched in ~2034
- Gravitational-waves detection from space

Monochromatic sources + drifting sources + chirping sources...and more

LISA: astronomical observatory of unprecedented range!

[1702.00786] Laser Interferometer Space Antenna

Contents

I. The Laser Interferometer Space Antenna (LISA) and astrophysical sources \checkmark

III. LISA data analysis

IV. Results

Glitches in LISA

[2205.11938] Transient acceleration events in LISA Pathfinder data: properties and possible physical origin

• One-sided model

$$g(t) = \frac{\Delta v}{\tau_1 - \tau_2} \left(e^{-\frac{t - t_0}{\tau_1}} - e^{-\frac{t - t_0}{\tau_2}} \right) \Theta(t - t_0)$$

• Exponential shapelet model

$$\Psi(t) = \sum_{i=1}^{P} \alpha_i \psi_n \left(\frac{t - \tau_i}{\beta_i}\right)$$

$$\int \\ \psi_n(t) = c_n \frac{2t}{n} e^{\frac{-t}{n}} L_{n-1}^1 \left(\frac{2t}{n}\right) \Theta(t)$$

Population of LPF glitches

Contents

I. The Laser Interferometer Space Antenna (LISA) and astrophysical sources \checkmark

II. Noise transients \checkmark

III. LISA data analysis

IV. Results

LISA response to glitches

- True reflection impossible ($P_{RX} \sim 100$ pW) six laser links
- Two test masses in each spacecraft

• Single-link response
$$\frac{\Delta L(t)}{L} = \int_{t_0}^t ds \frac{\Delta \omega(s)}{\omega_l} = y(t)$$

Time Delay Interferometry (TDI)

The Balrog code

• Collaboration: Institute for Gravitational Wave Astronomy, Univ. of Birmingham (UK)

credits: Balrog developers

Contents

I. The Laser Interferometer Space Antenna (LISA) and astrophysical sources \checkmark

II. Noise transients \checkmark

III. LISA data analysis 🖌

The joint scenario

• Short-lived massive black-hole binary signal

 $M = 6 \times 10^7 M_{\odot}$

$$z = 5$$

$$t_m = 30h$$

- Three different glitches:
 - 1. Long (3300 s)

The joint scenario

• Short-lived massive black-hole binary signal

 $M = 6 \times 10^7 M_{\odot}$

$$z = 5$$

$$t_m = 30h$$

- Three different glitches:
 - 1. Long (3300 s)
 - 2. Moderate ($40 \,\mathrm{s}$)

The joint scenario

• Short-lived massive black-hole binary signal

 $M = 6 \times 10^7 M_{\odot}$

$$z = 5$$

$$t_m = 30h$$

- Three different glitches:
 - 1. Long (3300 s)
 - 2. Moderate ($40 \,\mathrm{s}$)
 - 3. Short (5s)

Signal match

Maximum match between massive black-hole (h) and glitch (g) waveforms

$$M(h,g) = \frac{(h|g)}{(h|h)^{1/2}(g|g)^{1/2}}$$

Parameter inference (short glitch)

17

Parameter inference (moderate glitch)

18

Parameter inference (long glitch)

19

Glitch analysis

Conclusions

Our work:

- modeling (bonus: acceleration TDI)
- extending Balrog to include glitches
- studying contamination of GW sources
- large campaign of glitch characterization in LISA

Future developments:

credits: ESA-C. Vijoux

Thanks for your attention!

From ground to space

Massive black-hole science

LISA Pathfinder (LPF) mission

LISA Data Challenges

- Open, collaborative effort to tackle scientific questions in the LISA data analysis
- Organized by the LISA Consortium
- Spritz challenge: joint characterization of GW signals and glitches

credits: ESA

Glitch-only analysis

Model selection:

- Number of components and shapelet order
- Number of glitches
- Injection point

Identification of the correct transient model trough Bayes factors

Bayesian statistics

$$d = n + g$$

Stationary and Gaussian noise

Model selection:

$$_{2}=rac{\mathcal{Z}_{M_{1}}}{\mathcal{Z}_{M_{2}}}$$

 BF_1

Run summary (GW+glitches)

ID	:	Injection	1	Recovery	$\log_{10} \mathcal{Z}$	Figure	Table
	Glitch Model	GW Source	Glitch Model GW Source				<i></i>
1	×	\checkmark (acceleration TDI)	×	\checkmark (acceleration TDI)	-35.27		
2	×	\checkmark (displacement TDI)	×	\checkmark (displacement TDI)	-35.19		
3	A1	×	A1	X	-14.0		
4	A2	×	A2	X	-9.1		
5	D	×	D	X	-8.8		
6	A1	\checkmark	×	1	-14537.8	4	III
7	A2	✓	×	1	-296.5	5	IV
8	D	✓	×	1	-48.8	6	V
9	A1	✓	A1	1	-46.8	4	III
10	A2	✓	A2	✓	-43.9	5	IV
11	D	\checkmark	D	✓	-40.8	6	V
12	×	✓	A1	1	-75.0		
13	×	✓	A2	1	-44.1		
14	×	✓	D	1	-52.2		

Parameter estimation results (GW+glitches)

	MBHB									Model A1					
ID	$m_{1z}~[10^7 M_\odot]$	$m_{2z}~[10^7 M_\odot]$	$t_m \; [{ m h}]$	χ_1	χ_2	$d_L [{ m Gpc}]$	$\iota \;[\mathrm{rad}]$	$\beta \; [\mathrm{rad}]$	$\lambda \; [\mathrm{rad}]$	$\phi \; [\mathrm{rad}]$	$\psi \ [\mathrm{rad}]$	$A \; [\rm pm/s]$	$eta_1 \; [\mathrm{s}]$	$\beta_2 \; [\mathrm{s}]$	$ au~[{ m h}]$
	4.5	1.5	30.0	0.4	0.3	47.6	0.6	0.30	2.0	1.0	1.7	3.0	1500.0	1800.0	30.21
9	$4.5_{-0.2}^{+0.2}$	$1.5\substack{+0.3 \\ -0.3}$	$30.00\substack{+0.10\\-0.08}$	$0.4^{+0.1}_{-0.1}$	$0.3\substack{+0.6 \\ -1.0}$	44^{+15}_{-15}	$0.8\substack{+0.3 \\ -0.6}$	$0.3\substack{+0.6 \\ -0.1}$	$2.0\substack{+0.3 \\ -0.1}$	$1.6^{+1.4}_{-1.3}$	$1.6^{+1.3}_{-1.4}$	$3.0\substack{+0.2\\-0.1}$	1637^{+594}_{-417}	1647^{+584}_{-426}	$30.219\substack{+0.006\\-0.006}$
6	$4.25\substack{+0.01 \\ -0.01}$	$0.610\substack{+0.007\\-0.007}$	$29.447\substack{+0.007\\-0.002}$	$-0.308\substack{+0.005\\-0.005}$	$-0.51\substack{+0.09\\-0.09}$	$10.010\substack{+0.032\\-0.009}$	$0.04\substack{+0.05 \\ -0.03}$	$0.150\substack{+0.005\\-0.005}$	$1.792\substack{+0.005\\-0.005}$	$1.6^{+1.4}_{-1.4}$	$1.6^{+1.4}_{-1.4}$	×	×	×	×
	4.5	1.5	30.0	0.4	0.3	47.6	0.6	0.30	2.0	1.0	1.7	×	×	×	×
1	$4.5_{-0.2}^{+0.2}$	$1.5\substack{+0.3 \\ -0.3}$	$30.01\substack{+0.09 \\ -0.08}$	$0.4^{+0.1}_{-0.1}$	$0.3\substack{+0.6 \\ -1.0}$	44^{+15}_{-14}	$0.8\substack{+0.3 \\ -0.6}$	$0.3\substack{+0.6 \\ -0.1}$	$2.0\substack{+0.2\\-0.1}$	$1.6^{+1.5}_{-1.3}$	$1.6^{+1.3}_{-1.4}$	×	×	×	×

Run summary (glitches)

ID		Inje	ction			Reco	overy	log-Evidence	Figure	Table	
	Glitch 1 Glitch 2			Glitch 1 Glitch 2							
15	D(1, 1)	D(1, 2)	X	X	D(1,1)	D(1, 2)	X	X	-16.1		VII
16					D(1, 1)	D(1, 3)	X	×	-18.0		
17					D(1, 2)	D(1,3)	X	X	-20.1		
18					D(1, 1)	X	×	X	-22.9		
19					D(1, 2)	×	×	×	-23.9		
20					D(1, 3)	X	X	X	-34.4		
21					D(1, 1)	D(1, 2)	D(1,3)	×	-17.0		
22	D(1, 1)	X	×	X	D(1,1)	X	X	X	-15.2		VII
23					D(2, 1)	×	X	×	-3650.20		
24					D(3, 1)	X	×	X	-3650.18		
25					D(1', 1)	X	X	X	-224.1		
26					D(2', 1)	X	X	×	-3628.6		
27					D(3',1)	×	×	×	-3640.8		
28	D(1, 2)	D(1,3)	D(3, 1)	D(3,2)	D(1,2)	D(1, 3)	D(3, 1)	D(3,2)	-34.8	9	VII
29	A2(1, 1)	X	A2(2',2)	X	A2(1, 1)	×	A2(2',2)	×	-15.9	8	VI
30	A1s(1)	×	×	×	A1s(1)	×	X	×	-13.6	7	VI
31	A1M(1)	X	X	X	A1M(1)	X	X	×	-18.0	7	VI
32	A1L(1)	×	×	×	A1L(1)	×	×	×	-16.6	7	VI

Glitch analysis

Acceleration TDI

credits: Riccardo Buscicchio, University of Milano-Bicocca

- Inclusion of glitches in Bayesian inference framework
- Gravitational-wave signal rewritten as acceleration

$$g(t) = \frac{d}{dt^2} [y(t)]$$

 \longrightarrow freq. domain $\mathcal{F}[G_X] = (2\pi f)^2 \mathcal{F}[M_X]$