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Jordan-Einstein Frames

» Old paper: Dicke (Phys. Rev. (1962) 125, 6 2163-2167)

Suppose the proton mass is 77, in mass units 77, and in “natural
units”, we scale the unit of measurement by a factor A~ (length) !

~

My = A~ mu . In the new unit the proton mass mp =\ mp.

* Confronting the measurement of the proton mass in the two mass units
(Faraoni and Nadeau 2007)
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Jordan-Einstein Frames
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* Invariance under rescaling of units of measurement implies Weyl (conformal)
invariance of the metric tensor

* The starting frame is called “Jordan” frame and the conformal transformed
the “Einstein Frame. One observable can be computed in both frames. Its
measure, obviously different in the two frames, is related by confoamal
rescaling according to the observable’s dimensions.(e.g. T, = A " mp ).

Scalar-Tensor Theory

* In general, one starts from a scalar-tensor theory, with GHY-like boundary term, in the Jordan Frame
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* and passes to the Einstein Frame with the transformation

e = (169G1(6) ™ g

® therefore, the action becomes
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* Itis assumed that if (g#y (SE), Qb(fl?)) is solution of the E.O.M also (g,“, (CE, ¢), ¢(.’E)) is

solution (True?). This reasoning seems to address that the transformation from the Jordan to the Einstein
frame look like a canonical transformation in the Hamiltonian theory.



Brans-Dicke Theory

* Brans-Dicke, with GHY boundary term, is a particular case of Scalar Tensor theory (f(¢) = ¢)
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Deruelle, Sendouda, Youssef PRD 80, (2009).

They still claim that the transformations are

* How to perform canonical analysis of this theory? o )
Hamiltonian canonical
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Garay and Gracia- G=Pqy, ¢=— ilog b hy=dh, N*=Ni, N= \/EN: & =+|>Ind
Bellido NPB 400 28 2
(1993):the N2=¢N2 N=¢N ~ab=l ab ~ % _
transformations ’ t ! p & p ™ 3(¢7T p )
are Hamiltonian {hap, Py = {hap, Py, {}, 77}y =
canonical. B - . .

{d)’ 77-}Js {Pab, 7h7"}J = 0, {hab: ¢}J = O, {hab’ ﬁ-}J =0

{ijab, (Z}J =0

Brans-Dicke Theory

* The Hamiltonian Weyl (conformal) transformations from the Jordan to the Einstein frames are
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N = N(167G¢)2 ; N; = N;(167G @) ; hy; = (167GP) hyj ;7 = ————1;
(167G9) (167Go); hij = (167G) hyj ;T (162G9)}
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* They are not Hamiltonian canonical
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* The Dirac’s constraint analysis of the Hamiltonian theory has to be done, independently, in the Jordan
and Einstein frames. We have studied the Hamiltonian constrained theory in Jordan and Einstein frames

3 3 3
for both cases w # — 5 and , w = — ;- In the case w = — Z—the theory has an extra Weyl(conformal)
symmetry with an associated primary first class constraint Cy,



Hamiltonian Analysis of BD for w # —%

in Jordan Frame

in Einstein Frame

constraints

7R 07t~ 0;H ~ 0;H; =~ 0;

constraints
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constraint algebra
{m,m} = 0y {m, H} = 0; {m, Hi} = 0; {ms, H} = O;
{mi, 1y} = 0; {M(2), Hale')} = —H ()O3 (x, 2');
{Mi(x). 1))} = Hila)9j6(x, ') — H;(2)06(z, o)
{H (@), H(2')} = H (2)9id (e, ') — Hi(2')0ld (2, 2');

constraint algebra
{77} = 0;{F, H} = 0; {7, H} = 0; {Fi, H} = 0;
(7o, H;} = 0; {ﬁ(x),ﬁi(x’)} = —H(z')28(z, 2");
{Hi(2), H;(@')} = Hi(2")9;0(w, ') — Hi(2)0)'8(w, 2');
{H(x), H(2')} = H(2)0,6(,2) — H'(&)0}d (x,2');

Hamiltonian Analysis of BD for w = —3

in Jordan Frame

3

in Einstein Frame

constraints
TN R0t R 0;Cy 0;H3/? ~ 0;7—[2—3/2) =~ 0;

constraints
T~ 0,05 = —d7iy = 0; H D = 0; Hg_g/z) ~ 0;

7I'NR".«O;

constraint algebra
{mn,mi} = {mn, HD} = {ow, HTPY = 0,
{miy MDY = {152} = 0,
{Cota), HT¥P (@)} = ~8l8(2,')Co();
{Col@), H2 @)} = PHD (@)3(w,2);
{HED(@), 1 (@)} = M) @)@, )
(K2 @), 1P @) ) =1 (@)858(@,00)
—H; 2 (2)8/6(z, ');
{12 (@), ) (a')} =
HTD (@)0'6(x, 2') — HTYP ()06 (2, )+
[D(log ¢(2))] C(2):6(z, ')

— [Di(log ¢(z"))] Cy ()08 (z, z');

constraint algebra
{Fn, @} = {Fn, HOP) = 0, {7, HO VY = 0
{%17 ﬁ(_3/2)} = {%i’ ﬁ§_3/2)} =0;
Co(@), H¥P (@)} =05
Colz), H 3P (')} = 0;
(AP (@), 7P (@)} = ~HD(@)9id (2, 2');
{HY D (2), H 2 (@)} = HETY D (2)8;6(x, o)
—H{ D (2)8/6(z,2);
{ﬁ(—3/2)(m)’ H(=3/2) (')} =
H D ()06 (x, a') — H P (2')86(x, 2');




FLAT FLRW Brans-Dicke theory
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CANONICAL EQUIVALENCE OF JF AND E]J VIA GAUGE
FIXING

* We have performed the following gauge fixing in the Jordan Frame and in the Einstein Frame

Jordan Frame N ~ ¢ ,N; ~ ¢; — Einstein Frame N — c(167rG¢)% ~0,N; — ¢;i(167G¢) ~ 0

¢ The secondary first class constraints T = 0 and m; =& 0 become second class constraints
y i

* Itis possible to define Dirac’s brackets and solve the second class constraints

{,}pB =1, }—{,@Q}C;ﬁl{(p,@, } Cap = {¥a, s} being ¢q, pp second class contraints

* The transformations from the Jordan to the Einstein frames result to be Hamiltonian canonical
transformations. Remember: now the phase space is a reduced one, whetre we have gauge-fixed the lapse
function N and the shift functions N; .

* Does it mean that the two frames are physically equivalent?



CANONICAL EQUIVALENCE AND PHYSICAL

EQUIVALENCE
Harmonic Oscillator (Goldstein )
2 2
_p | T
H=omt 21

Canonical transformations (not symmetry of the system...)

[ 2P
q= msinQ ,p = V2mwPcosQ

Therefore the Hamiltonian becomes

H =wP

and then,

E . OH 2E .
P_;’ Q—a—P—w, Q=wt+q, q(t)—\/mwzsm(wt+a)

Notice that the harmonic oscillator is mapped into a free particle

ANTI-GRAVITY TRANSFORMATIONS

(Canonical Transformations)

* There exist Hamiltonian Canonical Transformations on the extended phase space:
The Anti-Gravity transformations

N*ZN;%N*:WN;]’_\E‘:Ni'%*izﬁi;%fj=(16ﬂG¢)hij; @F
.. 7'('7'-7 ~ ]_ Post-Newtonian
R = § =W = ($me— )
(6rGg)t ¢ TP T g e T L
Carrolian Minkowskian
Gravity,
* In two dimensions, they look like G- o ,c >0 ‘J
2 2 2 2. Anti-Newtonian
ds® = —di* + A%dz";A > 1 M. Niedermaier 2019

* Since this theory is canonically equivalent to B-D theory, the constraint algebra of
secondary first class constraints (H, H,;) is like B-D theory’s one.



CANONICAL EQUIVALENCE AND PHYSICAL
EQUIVALENCE

+ JF is canonical equivalent, via gauge-fixing of Lapse N and shifts N; ,

to EF (structure of light cone preserved by JF-EF transformations).

* JF is canonical equivalent to Anti-Gravity frame (light cone structure modified

by JF- Anti-Gravity transformations).

* JF cannot be equivalent to two physically inequivalent frames. Therefore, Hamiltonioan
canonical transformations represent, in our opinion, a mathematical equivalence. These
transformations map solutions of e.o.m into solutions of e.o.m.

CONCLUSIONS

* The transformations from the Jordan to the Einstein frames, in the extended
phase space, are not Hamiltonian canonical transformations.

* Gauge-fixing the Lapse N and the Shifts N; and implementing the Dirac’s
Brackets, Hamiltonian canonical transformatlons do exist from JF to EF.

* This very fact does not mean, necessarily, that the two frames are “physically”
equivalent.

* The equivalence of the physical observables in JFF and EF remains still to be
studied.



