Probing the Big Bang with Quantum Fields

Marc Schneider

Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Istituto Nazionale di Fisica Nucleare (INFN)
Institute for Fundamental Physics of the Universe (IFPU)
in collaboration with A. Ashtekar, T. De Lorenzo, A. Del Rio

Spacelike Singularities

Singularities in General Relativity

singularity theorems by Hawking and Penrose

Definition [geodesic completeness]:

Let (M, g) be a spacetime with metric g and connected semi-Riemannian manifold M. The manifold is complete if every geodesic γ_{τ} can be uniquely extended to arbitrary values of its affine parameter τ.

FLRW Space-Time

cosmological space-time: FLRW space-time

$$
g=a^{2}(\eta)(-\mathrm{d} \eta \otimes \mathrm{~d} \eta+\mathrm{d} \vec{x} \otimes \mathrm{~d} \vec{x})
$$

scale factor $a(\eta)=a_{\alpha} \eta^{1+\alpha}$, singularity at $\eta=0$
conformal extension: $\eta \in(0, \infty) \rightarrow \eta \in(-\infty, \infty)$
physical manifold $M \rightarrow M^{\circ}$, now ${ }^{\circ}$ is \mathscr{C}^{0} at $\eta=0$

Singularity Probing

goal: revisiting the status of dynamical singularities through QFT probes
example: Big Bang singularity for FLRW space-time

> Will test fields $\phi(x)$ and observables constructed from them, e.g. $\left\langle\phi(x) \phi\left(x^{\prime}\right)\right\rangle,\left\langle\phi^{2}(x)\right\rangle,\left\langle T_{a b}(x)\right\rangle$ remain regular in the QFT sense across the singularity?

Quantum Fields in FLRW Space-Time

QFT in Cosmological Space-Times

mode sum decomposition for solving $(\square-\zeta R) \phi=0$

$$
\hat{\phi}(x)=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}}\left[\hat{A}(k) e(k ; \eta)+\hat{A}^{\dagger}(k) e^{*}(k ; \eta)\right] e^{i k x}
$$

mode equation

$$
e^{\prime \prime}(k ; \eta)+2 \frac{a^{\prime}(\eta)}{a(\eta)} e^{\prime}(k ; \eta)+k^{2} e(k ; \eta)=0
$$

normalization

$$
e(k ; \eta) e^{\prime *}(k ; \eta)-e^{\prime}(k ; \eta) e^{*}(k ; \eta)=\frac{i}{a^{2}(\eta)}
$$

QFT in Minkowski Space-Time

$$
\left(\alpha=-1: a(\eta)=1 \text {, volume element } \mathrm{d}^{4} V^{\circ}=\mathrm{d} \eta \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z\right)
$$

quantum field distribution in Minkowski space-time $\left(M^{\circ}, g^{\circ}\right)$

$$
\hat{\phi}^{\circ}(x)=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}}\left[\hat{A}(k) \frac{e^{-i k \eta}}{\sqrt{2 k}}+\hat{A}^{\dagger}(-k) \frac{e^{i k \eta}}{\sqrt{2 k}}\right] e^{i k x}
$$

$\hat{\phi}^{\circ}$ is a (tempered) operator-valued distribution obeying $P \hat{\phi}^{\circ}(x)=0$:
$\hat{\phi}^{\circ}(f)=\int_{M^{\circ}} \mathrm{d} V^{\circ} \hat{\phi}^{\circ}(x) f(x)$ is a self-adjoint operator on the Fock space satisfying $\int_{M^{\circ}} \mathrm{d} V^{\circ} \hat{\phi}^{\circ}(x)(P f(x))=0$ for all test functions $f(x) \in \mathcal{S}$.

Distributional Nature of Quantum Fields

distributional character is conceptually important:

$$
\left[\hat{\phi}^{\circ}(x), \hat{\phi}^{\circ}\left(x^{\prime}\right)\right]=i \hbar\left(G_{\mathrm{ad}}\left(x, x^{\prime}\right)-G_{\mathrm{ret}}\left(x, x^{\prime}\right)\right) \hat{\mathrm{d}}
$$

$$
\hat{\phi}(f)
$$

$$
\left\langle\hat{\phi}^{\circ}(x), \hat{\phi}^{0}\left(x^{\prime}\right)\right\rangle=\frac{\hbar}{4 \pi^{2}} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|^{2}-\left|t-t^{\prime}-i \varepsilon\right|^{2}}
$$

well-defined in QFT sense: $\phi(f)$ bounded for $\operatorname{supp}(f) \cap \Sigma_{\eta=0} \neq \varnothing$
QFT features a distributional deformation of the classical bracket

Radiation-Filled Universe

$$
\left(\alpha=0: a(\eta)=a_{0} \eta, R=0, \text { volume element } \mathrm{d}^{4} V=\mathrm{d}^{4} V^{\circ} a_{0}^{4} \eta^{4}\right)
$$

quantum field

$$
\hat{\phi}(f)=\int_{M^{\cdot}} \mathrm{d}^{4} V \hat{\phi}(x) f(x)=\int_{M^{\cdot}} \mathrm{d}^{4} V^{\circ} a^{4}(\eta) \frac{\hat{\phi}^{\circ}(x)}{a(\eta)} f(x)
$$

2-point distribution

$$
\begin{aligned}
\left\langle\hat{\phi}(x) \hat{\phi}\left(x^{\prime}\right)\right\rangle=\frac{\left\langle\hat{\phi}^{\circ}(x) \hat{\phi}^{\circ}\left(x^{\prime}\right)\right\rangle}{a(\eta) a\left(\eta^{\prime}\right)} & =\frac{\hbar}{4 \pi^{2} a_{0}^{2} \eta \eta^{\prime} \sigma_{\varepsilon}\left(x, x^{\prime}\right)} \\
\text { with } 2 \sigma_{\varepsilon}\left(x, x^{\prime}\right) & =\left|\vec{x}-\vec{x}^{\prime}\right|^{2}-\left|\eta-\eta^{\prime}-i \varepsilon\right|^{2}
\end{aligned}
$$

vacuum polarization $\left\langle\hat{\phi}^{2}(x)\right\rangle_{\text {ren }}=\lim _{x^{\prime} \rightarrow x}\left\langle\hat{\phi}\left(x^{\prime}\right) \hat{\phi}(x)\right\rangle-G_{\mathrm{DS}}\left(x, x^{\prime}\right)=0$
in general $\left\langle\hat{\phi}^{2}(x)\right\rangle_{\text {ren }} \propto R$ while $R \equiv 0$

Stress-Energy Tensor

$$
\left(\alpha=0: a(\eta)=a_{0} \eta, R=0, \text { volume element } \mathrm{d}^{4} V=\mathrm{d}^{4} V^{\circ} a_{0}^{4} \eta^{4}\right)
$$

stress-energy tensor

$$
\left\langle\hat{T}_{a b}(x)\right\rangle_{\text {ren }}=\frac{\hbar \nabla_{a} \eta \nabla_{b} \eta}{720 \pi^{2} a_{0}^{2} \eta^{6}}+\frac{\hbar g_{a b}^{\circ}}{576 \pi^{2} a_{0}^{2} \eta^{6}}
$$

(counterterms calculated by the DeWitt-Schwinger method)
homogeneous distribution $\quad \underline{\eta}^{-\alpha}: f(x) \rightarrow-\frac{(-1)^{\alpha-1}}{(\alpha-1)!} \int \mathrm{d} \eta \ln |\eta| \frac{\mathrm{d}^{\alpha} f}{\mathrm{~d} \eta^{\alpha}}(x)$
diverges as a function but is well defined as OVD of form η^{-2}

Discussion

Discussion

- distributional character of fields is crucial as they are "more tolerant" when encountering singularities (singularities are tamed)
- classical fields $\phi(x)$ diverge while the one-particle Hilbert space norm $\|\phi\|_{2}$ remains finite
- foreshadowing: symplectic product on classical phase space is conserved
- similar results can be found for the gravitational singularity in Schwarzschild space-time
- possible hints for quantum gravity: self-consistent theory that allows matter and geometry to interact quantum mechanically, geometry might also have a distributional character at the micro level

