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Spacelike Singularities



Singularities in General Relativity

singularity theorems by Hawking and Penrose

Definition [geodesic completeness]: 

Let  be a spacetime with metric  and connected semi-Riemannian 
manifold . The manifold is complete if every geodesic  can be uniquely 
extended to arbitrary values of its affine parameter . 

(M, g) g
M γτ

τ

spacelike singularities: geodesics end abruptly while tidal forces diverge 



FLRW Space-Time

cosmological space-time: FLRW space-time

scale factor , singularity at a(η) = aαη1+α η = 0

conformal extension: η ∈ (0,∞) → η ∈ (−∞, ∞)

g = a2(η)(−dη ⊗ dη + d ⃗x ⊗ d ⃗x)

physical manifold , now  is  at M → M∘ ∘g (0 η = 0

M

η = 0

M′ 



Singularity Probing

goal: revisiting the status of dynamical singularities through QFT probes

Will test fields  and observables constructed from them, e.g. 

, ,  remain regular in the QFT sense 

across the singularity?

ϕ(x)
⟨ϕ(x)ϕ(x′ )⟩ ⟨ϕ2(x)⟩ ⟨Tab(x)⟩

example: Big Bang singularity for FLRW space-time



Quantum Fields in FLRW 
Space-Time



QFT in Cosmological Space-Times

̂ϕ(x) = ∫ d3k
(2π)3 [ ̂A(k)e(k; η) + ̂A†(k)e*(k; η)] eikx

e′ ′ (k; η) + 2 a′ (η)
a(η) e′ (k; η) + k2e(k; η) = 0

e(k; η)e′ *(k; η) − e′ (k; η)e*(k; η) = i
a2(η)normalization 

mode equation

mode sum decomposition for solving  ( □ − ζR)ϕ = 0



QFT in Minkowski Space-Time

quantum field distribution in Minkowski space-time  

           

(M∘, g∘)

̂ϕ∘(x) = ∫ d3k
(2π)3 [ ̂A(k) e−ikη

2k
+ ̂A†(−k) eikη

2k ] eikx

 is a (tempered) operator-valued distribution obeying :̂ϕ∘ P ̂ϕ∘(x) = 0

 is a self-adjoint operator on the Fock space 

satisfying  for all test functions  .

̂ϕ∘( f ) = ∫M∘ dV∘ ̂ϕ∘(x)f(x)
∫M∘ dV∘ ̂ϕ∘(x)(Pf(x)) = 0 f(x) ∈ .

( : , volume element )α = − 1 a(η) = 1 d4V∘ = dηdxdydz



Distributional Nature of Quantum Fields

distributional character is conceptually important:

⟨ ̂ϕ∘(x), ̂ϕ∘(x′ )⟩ = ℏ
4π2

1
| ⃗x − ⃗x′ |2 − | t − t′ − iε |2

[ ̂ϕ∘(x), ̂ϕ∘(x′ )] = iℏ(Gad(x, x′ ) − Gret(x, x′ )) ̂id

QFT features a distributional deformation of the classical bracket

̂ϕ( f )

well-defined in QFT sense:  bounded for ϕ( f ) supp( f ) ∩ Ση=0 ≠ ∅



( : , , volume element )α = 0 a(η) = a0η R = 0 d4V = d4V∘a4
0η4

̂ϕ( f ) = ∫M∘
d4V ̂ϕ(x)f(x) = ∫M∘

d4V∘a4(η)
̂ϕ∘(x)

a(η) f(x)

⟨ ̂ϕ(x) ̂ϕ(x′ )⟩ = ⟨ ̂ϕ∘(x) ̂ϕ∘(x′ )⟩
a(η)a(η′ ) = ℏ

4π2a2
0ηη′ σε(x, x′ )

Radiation-Filled Universe

with 2σε(x, x′ ) = | ⃗x − ⃗x′ |2−|η − η′ − iε |2

quantum field

2-point distribution

⟨ ̂ϕ2(x)⟩ren = lim
x′ →x

⟨ ̂ϕ(x′ ) ̂ϕ(x)⟩ − GDS(x, x′ ) = 0

in general  while ⟨ ̂ϕ2(x)⟩ren ∝ R R ≡ 0

vacuum polarization



Stress-Energy Tensor

diverges as a function but is well defined as OVD of form  η−2

η−α : f(x) → − (−1)α−1

(α − 1)! ∫ dη ln |η |
dαf
dηα (x)

⟨ ̂Tab(x)⟩ren = ℏ∇aη∇bη
720π2a2

0η6 + ℏg∘
ab

576π2a2
0η6stress-energy tensor

homogeneous distribution

(counterterms calculated by the DeWitt-Schwinger method)

( : , , volume element )α = 0 a(η) = a0η R = 0 d4V = d4V∘a4
0η4



Discussion



Discussion

• distributional character of fields is crucial as they are „more tolerant“ when 
encountering singularities (singularities are tamed) 

• classical fields  diverge while the one-particle Hilbert space norm  
remains finite 

• foreshadowing: symplectic product on classical phase space is conserved  

• similar results can be found for the gravitational singularity in Schwarzschild 
space-time 

• possible hints for quantum gravity: self-consistent theory that allows matter 
and geometry to interact quantum mechanically, geometry might also have a 
distributional character at the micro level 

•

ϕ(x) ∥ϕ∥2


