Grand canonical ensemble of a *d*-dimensional Reissner-Nordström black hole space inside a cavity

Tiago V. Fernandes in collab. with J. P. S. Lemos

Sep 4, 2023

Supported by FCT UIDB/00099/2020 and UIDP/00099/2020

XXV SIGRAV Conference on General Relativity and Gravitation

T. V. Fernandes

Gibbons and Hawking¹ obtained thermodynamics of BH by constructing canonical and grand canonical ensemble through the path integral approach in the zero loop approximation (but i.e. canonical ensemble of Schwarzschild was unstable).

York² assumed finite cavity, one Schwarzschild solution was stable!

Braden et al 3 analyzed the grand canonical ensemble of a charged black hole.

André and Lemos⁴ generalized York's work for *d* dimensions.

T. V. Fernandes

¹G. W. Gibbons and S. W. Hawking, Phys. Rev. D **15**, 2752 (1977).

²J. W. York, Phys. Rev. D **33**, 2092 (1986)

³H. W. Braden, J. D. Brown, B. F. Whiting and J. W. York, Phys. Rev. D **42**, 3376 (1990). ⁴R. André and J. P. S. Lemos, Phys. Rev. D **103**, 064069 (2021)

Partition function through Euclidean path integral approach

The partition function by the Euclidean path integral approach is $Z[\beta,\phi] = \int DADg \ e^{-I}$.

One transforms the Lorentzian spacetime to Euclidean space through $t \rightarrow -i\tau$, where τ is periodic.

Outer boundary is spherical with radius R. The inverse temperature β is the Euclidean time length at this boundary and ϕ is the electric potential. Regularity conditions at inner "boundary".

Zero Loop approximation:

Assume only spherical symmetric metrics.

Apply GR and Maxwell constraints to get reduced action I_* , then find its minimum (black hole solutions).

Action, geometry and boundary conditions

The Euclidean action is

$$\begin{split} I_E &= -\int_{\mathscr{M}} \left(\frac{R}{16\pi} - \frac{F_{ab}F^{ab}}{4} \right) \sqrt{g} d^d x \\ &- \frac{1}{8\pi} \int_{\mathscr{B}} (K - K_0) \sqrt{\gamma} d^{d-1} x , \\ F_{ab} &= \partial_a A_b - \partial_b A_a . \end{split}$$

We impose spherical symmetric metric

$$ds^2 = b^2 d\tau^2 + \alpha^2 dy^2 + r^2 d\Omega^2 \;,\; 0 \le \tau \le 2\pi \;,\; 0 \le y \le 1 \;.$$

Boundary (regularity) conditions at y = 0: b(0) = 0, $b'\alpha^{-1}|_0 = 1$, $r'\alpha^{-1}|_0 = 0$, $A_{\tau}(0) = 0$, $r(0) = r_+$.

Boundary conditions at y = 1: $\beta = 2\pi b(1)$ and $\beta \phi = 2\pi i A_{\tau}(1)$.

Reduced action

We impose the Gauss constraint, the Hamiltonian and momentum constraints. Then, the reduced action becomes

$$I_{*} = \frac{(d-2)\Omega R^{d-3}\beta}{8\pi} \left(1 - \sqrt{f[R;r_{+},q]}\right) - q\beta\phi - \frac{\Omega r_{+}^{d-2}}{4}$$

$$f = 1 - rac{r_+^{d-3}}{r_-^{d-3}} - rac{\lambda q^2}{r_+^{d-3} r^{d-3}} + rac{\lambda q^2}{r^{2d-6}} \ , \ \ \lambda = rac{8\pi}{(d-2)(d-3)\Omega^2} \ ,$$

The stationary points $r_+[\beta, \phi, R]$ and $q[\beta, \phi, R]$, where $dI_* = 0$, are found by

$$\beta = \frac{1}{T} = \frac{4\pi}{d-3} \frac{r_+^{2d-5}}{r_+^{2d-6} - \lambda q^2} \sqrt{f} ,$$

$$\phi = \frac{q}{(d-3)\Omega\sqrt{f}} \left(\frac{1}{r_+^{d-3}} - \frac{1}{R^{d-3}}\right)$$

Solutions of ensemble and stability

There are up to 2 solutions $r_{+1} < r_{+2}$. We define:

$$\begin{split} & x = \frac{r_+}{R}, \; y = \frac{\lambda q^2}{R^{2d-6}} \; , \; \lambda = \frac{8\pi}{(d-2)(d-3)\Omega^2} \; , \\ & \Phi = (d-3)\Omega\sqrt{\lambda}\phi \; , \\ & \pi R T_0 = \frac{(d-3)^{\frac{1}{2}}(d-1)^{\frac{d-1}{2d-6}}(1-\Phi^2)^{\frac{d-2}{d-3}}}{2^{\frac{2d-5}{2}}} \; . \end{split}$$

Solution
$$r_{+2}$$
 (stable) exists in:
 $RT_0 < RT < (d-3)\frac{1-\Phi^2}{4\pi\Phi}$
and $0 < \Phi^2 < \frac{d-3}{d-2}$.

Solution r_{+1} (unstable) exists in: $RT_0 < RT$ and $0 < \Phi^2 < 1$.

In d = 5, solutions are roots of a quadratic.

T. V. Fernandes

Thermodynamics of the ensemble

From the zero loop approximation, we have $Z = e^{-I_0}$.

To obtain the thermodynamics, we can use the relation $Z = e^{-\beta W}$, with $W = E - TS - \phi Q$ being the grand potential, and so $I_0 = \beta W$.

Through the derivatives of the grand potential, we get

$$S = \frac{A_+}{4}, \qquad Q = q,$$
$$p = \frac{d-3}{16\pi R\sqrt{f}} \left(\left(1 - \sqrt{f}\right)^2 - \frac{\lambda q^2}{R^{2d-6}} \right)$$

The energy given by $E = W + TS + \phi Q$ is

$$E = \frac{(d-2)\Omega R^{d-3}}{8\pi} (1-\sqrt{f}).$$

Stable if $C_{A,\phi} > 0$.

Phase transitions

Ensemble with two solutions: stable black hole or "hot flat space". The system prefers to be at the lowest value of W. We mimic "hot flat space" as a very small charged shell (without gravity).

$$W_{\text{shell}} = -\frac{(d-3)\Omega r_0^{d-3}}{2\left(1-\frac{r_0^{d-3}}{R^{d-3}}
ight)}\phi^2 \,.$$

T. V. Fernandes

- Two solutions arise from the grand canonical ensemble of a charged black hole, r_{+1} (small) and r_{+2} (large);
- r₊₂ is stable and only lives in a finite interval of temperatures, r₊₁ is unstable;
- Energy is the quasilocal energy, pressure as the one of the shell, entropy is the Bekenstein-Hawking;
- Hot flat space is more favorable until a maximum of r_+/R different than Buchdahl-Andréasson-Wright bound.