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Introduction

v The history of the Universe undergoes a period of exponential expansion, inflation.

v Quantum fluctuations provide the seeds for structure formation.

v The CMB sky we see today is classical.
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v The history of the Universe undergoes a period of exponential expansion, inflation.

v Quantum fluctuations provide the seeds for structure formation.

v The CMB sky we see today is classical.

Quantum to classical transition

v Inflation itself provides an explanation due to squeezing.

v Further source of classicalization: reheating.



Framework

v de Sitter (DS) inflation followed by a Radiation Domination (RD) phase

v Axions produced via misalignment mechanism with [ > max(T,,, H))
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Framework

What about the axion potential?

V(g) = f? mq% [1 — COS (?)]
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Background Field

Equation of motion
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Equation of motion

Background Field
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Background Field

Equation of motion Energy density
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v The energy density is constant till the background field starts oscillating; thereafter it

decays as a3

v The onset of the oscillations depend on the initial field value.



Axion Perturbations

v Consider the action for the perturbations.

v Compute the corresponding Hamiltonian (in Fourier space).

v Quantize the fields introducing time-dependent ladder operators.
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v Time-dependent ladder operators are linked with time-independent ladder operators

via Bogoliubov transformation:

{akw) = o(7) ay (1) + f(@)al, (zp)

aik(f) = 05/? (7) aik(To) + ﬂlzk (Day(7p)



Axion Perturbations

v The fields ¥k and py can be written alternatively in terms of the time-independent

ladder operators directly:

Y = W (1) al(() +u;(7) agli

Px = (1) al(() +u’ (1) agli
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v Comparing;:
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v The Bogoliubov coefficients can be parameterised by the squeezing parameters:

{ a,(7) = e %® cosh ry(7)

B(t) = !5 +20@) ginh r ()



Analysis of the Beta Coefficient
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Analysis of the Beta Coefficient
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Analysis of the Beta Coefficient

<
RS

~~ Y
~

—Tt 0 7T ®o

v The rolling down of the field is delayed increasing the initial field value.
v Near the hilltop, the field ¢, — d¢ begins to oscillate much earlier than the ¢y + o¢
v This delay makes o¢, larger and larger when evolving in time.

v In the limiting case where ¢;, = 7, the field won't start oscillating at all.



Analysis of the Beta Coefficient
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Analysis of the Squeezing Parameters
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Squeezing Formalism

The process of particle creation can be equivalently described by means of the

squeezing formalism, whose advantage is to give a clear phase space representation

of the system's evolution.

The evolution in time of the ladder operators can be given by:
a4 (1) = U(z) ady U'(z)

Where:

R(,) = exp [—i&k ( 7040 KT aTl({) Ok>]

S(ry, ) = exp [rk <e‘2i‘/’k a)a’, — 2’4"ka70 Tl?)]



Squeezing Formalism

The action of these two operators on g, (7) can be computed:
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Squeezing Formalism

The action of these two operators on g, (7) can be computed:

RSay () S'RY = ™% coshra — ' (%+24) sinh ra”]

Making a comparison we recognize:

p A
{ak(r) — ¢~ cosh I”k(T) e:},
B(z) = — e!l%@+20:@] ginh r (1)

In the context of cosmological particle creation: \
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Conclusions and Future Developments

v Anharmonic effects produce an enhancement in the number of particles created due

to the expansion

v The number of particles and the energy density increase exponentially when

approaching the hilltop of the potential

v Anharmonic effects increase also the amount of squeezing of the perturbations

v Study the observables for this system, e.g. power spectrum and bispectrum

v Apply this machinery to the analysis of other physical systems, like primordial

electromagnetic fields
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Axion Perturbations

The action to consider is:

fenl i (8)6]-
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Define:
u(r) = a(t)g(z)

We can compute the corresponding Hamiltonian (in Fourier space):




Axion Perturbations

We quantize the fields introducing time-dependent ladder operators:

1
o= ——= (@ +a', @)
\V 2 wf = k*+ mesz ——
a

Px=-— i\/% <ak(T) - ajk(f)>

Respecting canonical commutation relations:
@00 =80k -k, |a@,al@] =500 - k)

Time-dependent ladder operators are linked with time-independent ladder operators via
Bogoliubov transformation:

ak(T) = ak(T) ak(T()) + ﬂk(f)ajk(fo)
aik(’f) = &k(T) ajk(To) + ﬁk(f)ak(fo)



Axion Perturbations

The fields u, and p, can be written alternatively in terms of the time-independent

ladder operators directly:
Y = W (1) al(() +u;(7) agli

Px = (1) al(() +u’ (1) agli

Comparing:
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Axion Perturbations

The Bogoliubov coefficients can be parameterised by the squeezing parameters:

{ a(7) = e %® cosh ry(7)

B(1) = — 1% +20@)| ginh r (1)

Inverting these relations:
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Axion Mode Functions

In terms of conformal time:

a//
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Solution for mass term potential:

Ups(z) = %\/;ze%iﬂ@u%)w / HL* —7HWV <k (I; — T>>
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Axion Mode Functions

In terms of e-folding time:
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Particle Creation in Curved Spacetime

Cosmological framework: the instantaneous vacuum defined by the time-dependent
ladder operators (ak(n),alj(n)) is filled with particles associated with the initial time-

independent operators (al((), al(() D

What is the correct choice for the initial ladder operators?
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the vacuum state.




Particle Creation in Curved Spacetime

Cosmological framework: the instantaneous vacuum defined by the time-dependent
ladder operators (ak(n),alz(n)) is filled with particles associated with the initial time-

independent operators (al?, al? D
What is the correct choice for the initial ladder operators?

In Minkowski spacetime
there is a unique choice for

the vacuum state.

On an arbitrary spacetime, there are in

general no isometries that allow to define

uniquely the vacuum state.



Particle Creation in Curved Spacetime

Assuming Minkowski in the asymptotic past and future:

a () — ali”, a () — a"

n—>—00 H—>+00
Linked via time-independent Bogoliubov coeflicients A, and B, .

Time-dependent Bogoliubov coefficients are their late time limit:

a(n) —— Ay, p(n) —— B,
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When the background felt by the fields can be approximated as constant in time?
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Adiabaticity Condition
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Adiabaticity Condition
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Squeezing Formalism

To understand the physical meaning consider the simple harmonic oscillator

) hw
N f —iy/— (a—a'
q 20)(a+a) p l 2(61 a)

Define the Hermitian field quadrature operators:

X, =a+a' X2=—i(a—a7)
And the single-mode squeeze operator

e* 5 € 2 .
S(e) = exp 7(1 — Ea e = re2i



Squeezing Formalism

p A ST(e)aS(e) = a cosh(r) — a’e %% sinh(r)
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The squeeze operator
attenuates one component
of the (rotated) complex

amplitude while amplifying

the other one.




Analysis of the Beta Coefficient

The beta coefficient can be tested analytically using the energy density.
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More Realistic Models: Smoothing the Hubble

We tried smoothing the Hubble in order to prove that the asymptotic behaviour is not

aftected by possible modifications to the Hubble during a non instantaneous reheating

phase.
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More Realistic Models: Smoothing the Hubble

We tried smoothing the Hubble in order to prove that the asymptotic behaviour is not
aftected by possible modifications to the Hubble during a non instantaneous reheating

phase.
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The adiabaticity condition still holds in the found regimes.
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More Realistic Models: Smoothing the Hubble
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More Realistic Models: Quasi DS Inflation

What happens if we consider the background evolution of the Universe as given by a
single-field inflationary model?
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More Realistic Models: Quasi DS Inflation

What happens if we consider the background evolution of the Universe as given by a
single-field inflationary model?
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