
Valentina Danieli

  SISSA, Trieste XXV SIGRAV Conference, 05/09/2023

Anharmonic Effects on the 
Squeezing of Axion Perturbations

Supervisors: 
Matteo Viel 

Sabino Matarrese

Collaborators: 
Takeshi Kobayashi 

Nicola Bartolo



Introduction

1

✓ The history of the Universe undergoes a period of exponential expansion, inflation.

✓ Quantum fluctuations provide the seeds for structure formation.

✓ The CMB sky we see today is classical.



Introduction

1

✓ The history of the Universe undergoes a period of exponential expansion, inflation.

✓ Quantum fluctuations provide the seeds for structure formation.

✓ The CMB sky we see today is classical.

✓ Inflation itself provides an explanation due to squeezing.

Quantum to classical transition

✓ Further source of classicalization: reheating.



✓ Axions produced via misalignment mechanism with 

Framework

2

✓ de Sitter (DS) inflation followed by a Radiation Domination (RD) phase

f > max(Trh, HI)

✓ Axion is a spectator field

✓ Instantaneous reheating
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Framework
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What about the axion potential?

V(ϕ) = f 2 m2
ϕ [1 − cos ( ϕ

f )]

··ϕ0 + 3H ·ϕ0 + fm2
ϕ sin ( ϕ0

f ) = 0

δ ··ϕ + 3Hδ ·ϕ + [ k2

a2
+ m2

ϕ cos ( ϕ0

f )] δϕ = 0



Background Field
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··ϕ0 + 3H ·ϕ0 + fm2
ϕ sin ( ϕ0

f ) = 0
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Equation of motion

f = 1010GeV
m = 102GeV

H* = 108GeV



Background Field

4

··ϕ0 + 3H ·ϕ0 + fm2
ϕ sin ( ϕ0

f ) = 0
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Equation of motion Energy density

ρϕ =
·ϕ2

2
+ V(ϕ) =

H2

2 ( dϕ
dη )

2

+ V(ϕ)f = 1010GeV
m = 102GeV

H* = 108GeV



Background Field

4

··ϕ0 + 3H ·ϕ0 + fm2
ϕ sin ( ϕ0

f ) = 0
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Equation of motion Energy density

ρϕ =
·ϕ2

2
+ V(ϕ) =

H2

2 ( dϕ
dη )

2

+ V(ϕ)

✓ The onset of the oscillations depend on the initial field value.

✓ The energy density is constant till the background field starts oscillating; thereafter it 
decays as a−3

f = 1010GeV
m = 102GeV

H* = 108GeV



Axion Perturbations
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✓Consider the action for the perturbations.

✓Compute the corresponding Hamiltonian (in Fourier space).

✓Quantize the fields introducing time-dependent ladder operators.

✓Time-dependent ladder operators are linked with time-independent ladder operators 
via Bogoliubov transformation:

{
ak(τ) = αk(τ) ak(τ0) + βk(τ)a†

−k(τ0)
a†

−k(τ) = α*k (τ) a†
−k(τ0) + β*k (τ)ak(τ0)

χk =
1
2ωk

(ak(τ) + a†
−k(τ))

ω2
k = k2 + m2

eff −
a′ ′ 

a

pk = − i
ωk

2 (ak(τ) − a†
−k(τ))



Axion Perturbations
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χk = uk(τ) a0
k + u*k (τ) a0 †

−k

pk = u′ k(τ) a0
k + u* ′ k (τ) a0 †

−k

✓ The fields     and     can be written alternatively in terms of the time-independent 
ladder operators directly:

χk pk

✓ Comparing:

αk =
ωk

2
uk(τ) −

i
2 ωk

u′ k(τ)

βk =
ωk

2
u*k (τ) −

i
2 ωk

u* ′ k (τ)

{
αk(τ) = e−iϑk(τ) cosh rk(τ)

βk(τ) = ei[ϑk(τ) + 2φk(τ)] sinh rk(τ)

✓ The Bogoliubov coefficients can be parameterised by the squeezing parameters:



Analysis of the Beta Coefficient
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|βk |2 =
ωk

2
| fk |2 +

1
2 ωk

| f′ k |2 −
1
2
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Analysis of the Beta Coefficient
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|βk |2 =
ωk

2
| fk |2 +

1
2 ωk

| f′ k |2 −
1
2
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Analysis of the Beta Coefficient
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✓ The rolling down of the field is delayed increasing the initial field value.

✓ Near the hilltop, the field            begins to oscillate much earlier than theϕ0 − δϕ ϕ0 + δϕ

✓ In the limiting case where          , the field won't start oscillating at all.ϕin = π

✓ This delay makes      larger and larger when evolving in time.δϕk



Analysis of the Beta Coefficient
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|βk |2 =
1

8π
Γ(1/4)2

H7/2
inf

m k3
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Analysis of the Squeezing Parameters
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Squeezing Formalism
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The process of particle creation can be equivalently described by means of the 
squeezing formalism, whose advantage is to give a clear phase space representation 
of the system's evolution.

The evolution in time of the ladder operators can be given by:

a±k(τ) = U(τ) a0
±k U†(τ)

U = RS

S(rk, φk) = exp [rk (e−2iφk a0
k a0

−k − e2iφk a † 0
k a† 0

−k)]

R(ϑk) = exp [−iϑk (a † 0
k a0

k + a† 0
−k a0

−k)]

Where:
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The action of these two operators on        can be computed:ak(τ)

RSak(τ) S†R† = e−i ϑk cosh rk a0
k − ei (ϑk + 2 φk) sinh rka0 †

−k

Squeezing Formalism
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The action of these two operators on        can be computed:

Making a comparison we recognize:

ak(τ)

Squeezing Formalism

RSak(τ) S†R† = e−i ϑk cosh rk a0
k − ei (ϑk + 2 φk) sinh rka0 †

−k

{
αk(τ) = e−iϑk(τ) cosh rk(τ)

βk(τ) = − ei[ϑk(τ) + 2φk(τ)] sinh rk(τ)
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The action of these two operators on        can be computed:

Making a comparison we recognize:

ak(τ)

|ϕout(η)⟩ =
1
2 ∏

k

1
cosh rk

∞

∑
n=0

(−tanh rk e2iφk)n |nk, n−k⟩

|ϕout(η)⟩ =
1
2 ∏

k

S(rk, φk) R(ϑk) |0k,0−k⟩

In the context of cosmological particle creation:

Squeezing Formalism

{
αk(τ) = e−iϑk(τ) cosh rk(τ)

βk(τ) = − ei[ϑk(τ) + 2φk(τ)] sinh rk(τ)

RSak(τ) S†R† = e−i ϑk cosh rk a0
k − ei (ϑk + 2 φk) sinh rka0 †

−k



Conclusions and Future Developments
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✓ Anharmonic effects produce an enhancement in the number of particles created due 
to the expansion

✓ Anharmonic effects increase also the amount of squeezing of the perturbations

✓ The number of particles and the energy density increase exponentially when 
approaching the hilltop of the potential

✓ Study the observables for this system, e.g. power spectrum and bispectrum

✓ Apply this machinery to the analysis of other physical systems, like primordial 
electromagnetic fields



 THANKS FOR THE ATTENTION



Axion Perturbations

I

The action to consider is:

S = ∫ d4x −g [−
1
2

∂μϕ∂μϕ −
1
2

m2
ϕ cos ( ϕ0

f ) ϕ2] =

= ∫ d3xdτ a2 [ 1
2

ϕ′ 2 −
1
2

(∂iϕ)2 −
1
2

m2
ϕ a2 cos ( ϕ0

f ) ϕ2]
Define:

u(τ) = a(τ)ϕ(τ)

We can compute the corresponding Hamiltonian (in Fourier space):

ℋ =
1

2(2π)3 ∫ d3k [pk p*k + (k2 + m2
eff a2 −

a′ ′ 

a ) χk χ*k ]

m2
eff = fm2

ϕ cos ( ϕ0

f )̂pk = ̂χ′ k



Axion Perturbations

II

We quantize the fields introducing time-dependent ladder operators:

χk =
1
2ωk

(ak(τ) + a†
−k(τ))

Respecting canonical commutation relations:

[χk(τ), p†
k′ (τ)] = iδ(3)(k − k′ ) , [ak(τ), a †

k′ (τ)] = δ(3)(k − k′ )

Time-dependent ladder operators are linked with time-independent ladder operators via 
Bogoliubov transformation:

ω2
k = k2 + m2

eff −
a′ ′ 

a

pk = − i
ωk

2 (ak(τ) − a†
−k(τ))

{
ak(τ) = αk(τ) ak(τ0) + βk(τ)a†

−k(τ0)
a†

−k(τ) = α̃k(τ) a†
−k(τ0) + β̃k(τ)ak(τ0)



Axion Perturbations

III

χk = uk(τ) a0
k + u*k (τ) a0 †

−k

pk = u′ k(τ) a0
k + u* ′ k (τ) a0 †

−k

The fields     and     can be written alternatively in terms of the time-independent 
ladder operators directly:

uk pk

Comparing:

αk =
ωk

2
uk(τ) −

i
2 ωk

u′ k(τ)

βk =
ωk

2
u*k (τ) −

i
2 ωk

u* ′ k (τ)

|βk |2 =
ωk

2
|uk |2 +

1
2 ωk

|u′ k |2 −
1
2



Axion Perturbations

IV

r = sinh−1 |β |

ϑ = arccos (Re α
|α | )

φ = −
1
2

arccos (Re α β
|α β | )

{
αk(τ) = e−iϑk(τ) cosh rk(τ)

βk(τ) = − ei[ϑk(τ) + 2φk(τ)] sinh rk(τ)

The Bogoliubov coefficients can be parameterised by the squeezing parameters:

Inverting these relations:



Axion Mode Functions

V

uDS(τ) =
1
4

πe
1
2 iπ(ν2 + 1

2 ) 1
H*

− τ H(1)
ν (k ( 1

H*
− τ))

u′ ′ + (k2 + m2
eff a

2 −
a′ ′ 

a ) u = 0

In terms of conformal time:

Solution for mass term potential:

uRD(τ) = c1 D− ik2 + H*m
2H*m ((1 + i)

m
H*

(H*τ + 1)) + c2 Dik2 − H* m
2 H* m ((i − 1)

m
H*

(H*τ + 1))



Axion Mode Functions

VI

In terms of e-folding time:

u′ ′ + (1 +
H′ 

H ) u′ + ( k2

H2
e−2η − 2 −

H′ 

H
+

m2
eff

H2 ) u = 0

k = 102GeV
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Cosmological framework: the instantaneous vacuum defined by the time-dependent 
ladder operators           is filled with particles associated with the initial time-
independent operators             .

Particle Creation in Curved Spacetime

VII

(ak(η), a †
k(η))

What is the correct choice for the initial ladder operators?

(a0
k, a 0 †

k )



Cosmological framework: the instantaneous vacuum defined by the time-dependent 
ladder operators           is filled with particles associated with the initial time-
independent operators             .

Particle Creation in Curved Spacetime

VII

(ak(η), a †
k(η))

What is the correct choice for the initial ladder operators?

In Minkowski spacetime 
there is a unique choice for 
the vacuum state.

(a0
k, a 0 †

k )



Cosmological framework: the instantaneous vacuum defined by the time-dependent 
ladder operators           is filled with particles associated with the initial time-
independent operators             .

Particle Creation in Curved Spacetime

VII

(ak(η), a †
k(η))

What is the correct choice for the initial ladder operators?

In Minkowski spacetime 
there is a unique choice for 
the vacuum state.

(a0
k, a 0 †

k )

On an arbitrary spacetime, there are in 
general no isometries that allow to define 
uniquely the vacuum state.



Particle Creation in Curved Spacetime

VIII

αk(η)
η→+∞

Ak , βk(η)
η→+∞

Bk

Time-dependent Bogoliubov coefficients are their late time limit:

Assuming Minkowski in the asymptotic past and future:

Linked via time-independent Bogoliubov coefficients     and     .Ak Bk

ak(η)
η→−∞

ain
k , ak(η)

η→+∞
aout

k

When the background felt by the fields can be approximated as constant in time?

Adiabaticity condition:
ω′ k

ω2
k

2

,
ω′ ′ k

ω3
k

≪ 1



Adiabaticity Condition

IX

The adiabaticity condition is defined as:

If the adiabaticity condition holds: f(τ) =
Ak

2k
e+i ∫τ ωk(τ′ )dτ′ +

Bk

2k
e−i ∫τ ωk(τ′ )dτ′ 

f′ ′ + ω2
k f = 0

ω2
k = k2 + m2a2−

a′ ′ 

a

-20 -10 0 10 20
0

50000

100000

150000

200000

250000

300000

350000

ω′ k

ω2
k

2

,
ω′ ′ k

ω3
k

≪ 1



Adiabaticity Condition

X
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✓ Around       the frequency starts 
changing rapidly in time.

✓The adiabaticity condition holds 
when the field starts oscillating, 
around 

η ≃ − 14

✓ When the mode is far superhorizon it 
settles to a constant value given by

ω′ 

ω2
=

a a′ (m2 − 2H2)

[k2 + a2 (m2 − 2 H2)]
3/2 ⟶ 1/ 2

η ≃ 8

✓ It can be proved that

ω′ 

ω2
→

a3H m2

k3
k ≫ a m

H
m

k ≪ a m



Adiabaticity Condition

XI
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XII

To understand the physical meaning consider the simple harmonic oscillator

Define the Hermitian field quadrature operators:

p = i
ℏω
2 (a − a†)q =

ℏ
2ω (a + a†)

Squeezing Formalism

X1 = a + a† X2 = − i (a − a†)

And the single-mode squeeze operator

S(ε) ≡ exp [ ε*
2

a2 −
ε
2

a†2] ε = re2iϕ



XIII

Squeezing Formalism

S†(ε)aS(ε) = a cosh(r) − a†e−2iϕ sinh(r)

S†(ε)a†S(ε) = a† cosh(r) − ae−2iϕ sinh(r)

S†(ε)(Y1 + iY2) S(ε) = e−rY1 + iY2er

Y1 + iY2 ≡ (X1 + iX2) e−iϕ

The squeeze operator 
attenuates one component 
of the (rotated) complex 
amplitude while amplifying 
the other one.

ΔY1 = e−r ΔY2 = er



Analysis of the Beta Coefficient

XIV

The beta coefficient can be tested analytically using the energy density.

ρϕ = ρϕ0
+

dρ
dϕ

δϕ +
1
2

d2ρ
dϕ2

δϕ2

⟨δρϕ⟩ =
1
2

d2ρ
dϕ2

*
⟨δϕ2

*⟩ ⟨δϕ*(x) δϕ*(y)⟩ = ∫
d3k

(2π)3
e−ik⋅(x−y) H2

*

2 k3

δρϕ =
⟨ℋ⟩
a4 V

=
1
a4 ∫ d3k ωk |βk|2

1.  

2.  

|βk |2 =
1
2

d2ρ
dϕ2

*

H2
*

2 k3

a3

m



XV

We tried smoothing the Hubble in order to prove that the asymptotic behaviour is not 
affected by possible modifications to the Hubble during a non instantaneous reheating 
phase.

H(η) = H*
e−2η

e−2η + 1

More Realistic Models: Smoothing the Hubble
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XVI

We tried smoothing the Hubble in order to prove that the asymptotic behaviour is not 
affected by possible modifications to the Hubble during a non instantaneous reheating 
phase.

H(η) = H*
e−2η

e−2η + 1

More Realistic Models: Smoothing the Hubble

The adiabaticity condition still holds in the found regimes.
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XVII

More Realistic Models: Smoothing the Hubble

Our results in the late time limit are not affected:

-25 -20 -15 -10 -5 0 5 10
0

5

10

15

20

25

30

-25 -20 -15 -10 -5 0 5 10
0

5

10

15

20

25

30

-20 -15 -10 -5 0 5 10

10

105

109

1013

1017

1021

1025

π/4 π/2 π
1019

1023

1027

1031



XVIII

What happens if we consider the background evolution of the Universe as given by a 
single-field inflationary model?

H(η) =
mφ

1
3

−
2
3

η inflation

mφ

3
e−2η radiation
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More Realistic Models: Quasi DS Inflation
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What happens if we consider the background evolution of the Universe as given by a 
single-field inflationary model?

H(η) =
mφ

1
3

−
2
3

η inflation

mφ

3
e−2η radiation

More Realistic Models: Quasi DS Inflation
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