Supervisors:
Matteo Viel
Sabino Matarrese

Collaborators:
Takeshi Kobayashi
Nicola Bartolo

Introduction

\checkmark The history of the Universe undergoes a period of exponential expansion, inflation.
\checkmark Quantum fluctuations provide the seeds for structure formation.
\checkmark The CMB sky we see today is classical.

Introduction

\checkmark The history of the Universe undergoes a period of exponential expansion, inflation.
\checkmark Quantum fluctuations provide the seeds for structure formation.
\checkmark The CMB sky we see today is classical.

Quantum to classical transition

\checkmark Inflation itself provides an explanation due to squeezing.
\checkmark Further source of classicalization: reheating.

Framework

\checkmark de Sitter (DS) inflation followed by a Radiation Domination (RD) phase
\checkmark Axions produced via misalignment mechanism with $f>\max \left(T_{r h}, H_{I}\right)$
\checkmark Axion is a spectator field
\checkmark Instantaneous reheating

$$
H= \begin{cases}H_{*} & a<0 \\ H_{*} a^{-2} & a>0\end{cases}
$$

Framework

What about the axion potential?

$$
V(\phi)=f^{2} m_{\phi}^{2}\left[1-\cos \left(\frac{\phi}{f}\right)\right]
$$

$$
\begin{gathered}
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+f m_{\phi}^{2} \sin \left(\frac{\phi_{0}}{f}\right)=0 \\
\delta \ddot{\phi}+3 H \delta \dot{\phi}+\left[\frac{k^{2}}{a^{2}}+m_{\phi}^{2} \cos \left(\frac{\phi_{0}}{f}\right)\right] \delta \phi=0
\end{gathered}
$$

Background Field

Equation of motion

$$
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+f m_{\phi}^{2} \sin \left(\frac{\phi_{0}}{f}\right)=0
$$

$$
\begin{gathered}
f=10^{10} \mathrm{GeV} \\
m=10^{2} \mathrm{GeV} \\
H_{*}=10^{8} \mathrm{GeV}
\end{gathered}
$$

Background Field

Equation of motion

$$
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+f m_{\phi}^{2} \sin \left(\frac{\phi_{0}}{f}\right)=0
$$

Energy density

$$
\begin{gathered}
f=10^{10} \mathrm{GeV} \\
m=10^{2} \mathrm{GeV} \\
H_{*}=10^{8} \mathrm{GeV}
\end{gathered}
$$

$$
\rho_{\phi}=\frac{\dot{\phi}^{2}}{2}+V(\phi)=\frac{H^{2}}{2}\left(\frac{d \phi}{d \eta}\right)^{2}+V(\phi)
$$

Background Field

Equation of motion

$$
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+f m_{\phi}^{2} \sin \left(\frac{\phi_{0}}{f}\right)=0
$$

Energy density

$$
\rho_{\phi}=\frac{\dot{\phi}^{2}}{2}+V(\phi)=\frac{H^{2}}{2}\left(\frac{d \phi}{d \eta}\right)^{2}+V(\phi)
$$

\checkmark The energy density is constant till the background field starts oscillating; thereafter it decays as a^{-3}
\checkmark The onset of the oscillations depend on the initial field value.

Axion Perturbations

\checkmark Consider the action for the perturbations.
\checkmark Compute the corresponding Hamiltonian (in Fourier space).
\checkmark Quantize the fields introducing time-dependent ladder operators.

$$
\begin{array}{rlr}
\chi_{\mathbf{k}} & =\frac{1}{\sqrt{2 \omega_{k}}}\left(a_{\mathbf{k}}(\tau)+a_{-\mathbf{k}}^{\dagger}(\tau)\right) & \omega_{k}^{2}=k^{2}+m_{e f f}^{2}-\frac{a^{\prime \prime}}{a} \\
p_{\mathbf{k}} & =-i \sqrt{\frac{\omega_{k}}{2}}\left(a_{\mathbf{k}}(\tau)-a_{-\mathbf{k}}^{\dagger}(\tau)\right) &
\end{array}
$$

\checkmark Time-dependent ladder operators are linked with time-independent ladder operators via Bogoliubov transformation:

$$
\left\{\begin{array}{l}
a_{\mathbf{k}}(\tau)=\alpha_{k}(\tau) a_{\mathbf{k}}\left(\tau_{0}\right)+\beta_{k}(\tau) a_{-\mathbf{k}}^{\dagger}\left(\tau_{0}\right) \\
a_{-\mathbf{k}}^{\dagger}(\tau)=\alpha_{k}^{*}(\tau) a_{-\mathbf{k}}^{\dagger}\left(\tau_{0}\right)+\beta_{k}^{*}(\tau) a_{\mathbf{k}}\left(\tau_{0}\right)
\end{array}\right.
$$

Axion Perturbations

\checkmark The fields $\chi_{\mathbf{k}}$ and $p_{\mathbf{k}}$ can be written alternatively in terms of the time-independent ladder operators directly:

$$
\begin{gathered}
\chi_{\mathbf{k}}=u_{k}(\tau) a_{\mathbf{k}}^{0}+u_{k}^{*}(\tau) a_{-\mathbf{k}}^{0 \dagger} \\
p_{\mathbf{k}}=u_{k}^{\prime}(\tau) a_{\mathbf{k}}^{0}+u_{k}^{* \prime}(\tau) a_{-\mathbf{k}}^{0 \dagger}
\end{gathered}
$$

\checkmark Comparing:

$$
\begin{aligned}
& \alpha_{k}=\sqrt{\frac{\omega_{k}}{2}} u_{k}(\tau)-\frac{i}{\sqrt{2 \omega_{k}}} u_{k}^{\prime}(\tau) \\
& \beta_{k}=\sqrt{\frac{\omega_{k}}{2}} u_{k}^{*}(\tau)-\frac{i}{\sqrt{2 \omega_{k}}} u_{k}^{* \prime}(\tau)
\end{aligned}
$$

\checkmark The Bogoliubov coefficients can be parameterised by the squeezing parameters:

$$
\left\{\begin{array}{l}
\alpha_{k}(\tau)=e^{-i \vartheta_{k}(\tau)} \cosh r_{k}(\tau) \\
\beta_{k}(\tau)=e^{i\left[\vartheta_{k}(\tau)+2 \varphi_{k}(\tau)\right]} \sinh r_{k}(\tau)
\end{array}\right.
$$

Analysis of the Beta Coefficient

$$
\left|\beta_{k}\right|^{2}=\frac{\omega_{k}}{2}\left|f_{k}\right|^{2}+\frac{1}{2 \omega_{k}}\left|f_{k}^{\prime}\right|^{2}-\frac{1}{2}
$$

Analysis of the Beta Coefficient

$$
\left|\beta_{k}\right|^{2}=\frac{\omega_{k}}{2}\left|f_{k}\right|^{2}+\frac{1}{2 \omega_{k}}\left|f_{k}^{\prime}\right|^{2}-\frac{1}{2}
$$

Analysis of the Beta Coefficient

\checkmark The rolling down of the field is delayed increasing the initial field value.
\checkmark Near the hilltop, the field $\phi_{0}-\delta \phi$ begins to oscillate much earlier than the $\phi_{0}+\delta \phi$
\checkmark This delay makes $\delta \phi_{k}$ larger and larger when evolving in time.
\checkmark In the limiting case where $\phi_{\text {in }}=\pi$, the field won't start oscillating at all.

Analysis of the Beta Coefficient

$$
\left|\beta_{k}\right|^{2}=\frac{1}{8 \pi} \Gamma(1 / 4)^{2} \frac{H_{i n f}^{7 / 2}}{\sqrt{m} k^{3}}
$$

$$
x=\frac{\pi}{\pi-\theta}
$$

Analysis of the Squeezing Parameters

Squeezing Formalism

The process of particle creation can be equivalently described by means of the squeezing formalism, whose advantage is to give a clear phase space representation of the system's evolution.

The evolution in time of the ladder operators can be given by:

$$
a_{ \pm \mathbf{k}}(\tau)=U(\tau) a_{ \pm \mathbf{k}}^{0} U^{\dagger}(\tau)
$$

Where:

$$
\begin{gathered}
U=R S \\
R\left(\vartheta_{k}\right)=\exp \left[-i \vartheta_{k}\left(a_{\mathbf{k}}^{\dagger 0} a_{\mathbf{k}}^{0}+a_{-\mathbf{k}}^{\dagger 0} a_{-\mathbf{k}}^{0}\right)\right] \\
S\left(r_{k}, \varphi_{k}\right)=\exp \left[r_{k}\left(e^{-2 i \varphi_{k}} a_{\mathbf{k}}^{0} a_{-\mathbf{k}}^{0}-e^{2 i \varphi_{k}} a_{\mathbf{k}}^{\dagger 0} a_{-\mathbf{k}}^{\dagger 0}\right)\right]
\end{gathered}
$$

Squeezing Formalism

The action of these two operators on $a_{\mathbf{k}}(\tau)$ can be computed:

$$
R S a_{\mathbf{k}}(\tau) S^{\dagger} R^{\dagger}=e^{-i \vartheta_{k}} \cosh r_{k} a_{\mathbf{k}}^{0}-e^{i\left(\vartheta_{k}+2 \varphi_{k}\right)} \sinh r_{k} a_{-\mathbf{k}}^{0 \dagger}
$$

Squeezing Formalism

The action of these two operators on $a_{\mathbf{k}}(\tau)$ can be computed:

$$
R S a_{\mathbf{k}}(\tau) S^{\dagger} R^{\dagger}=e^{-i \vartheta_{k}} \cosh r_{k} a_{\mathbf{k}}^{0}-e^{i\left(\vartheta_{k}+2 \varphi_{k}\right)} \sinh r_{k} a_{-\mathbf{k}}^{0 \dagger}
$$

Making a comparison we recognize:

$$
\left\{\begin{array}{l}
\alpha_{k}(\tau)=e^{-i \vartheta_{k}(\tau)} \cosh r_{k}(\tau) \\
\beta_{k}(\tau)=-e^{i\left[\vartheta_{k}(\tau)+2 \varphi_{k}(\tau)\right]} \sinh r_{k}(\tau)
\end{array}\right.
$$

Squeezing Formalism

The action of these two operators on $a_{\mathbf{k}}(\tau)$ can be computed:

$$
R S a_{\mathbf{k}}(\tau) S^{\dagger} R^{\dagger}=e^{-i \vartheta_{k}} \cosh r_{k} a_{\mathbf{k}}^{0}-e^{i\left(\vartheta_{k}+2 \varphi_{k}\right)} \sinh r_{k} a_{-\mathbf{k}}^{0 \dagger}
$$

Making a comparison we recognize:

$$
\left\{\begin{array}{l}
\alpha_{k}(\tau)=e^{-i \vartheta_{k}(\tau)} \cosh r_{k}(\tau) \\
\beta_{k}(\tau)=-e^{i\left[\vartheta_{k}(\tau)+2 \varphi_{k}(\tau)\right]} \sinh r_{k}(\tau)
\end{array}\right.
$$

In the context of cosmological particle creation:

$$
\begin{gathered}
\left|\phi_{\text {out }}(\eta)\right\rangle=\frac{1}{2} \prod_{\mathbf{k}} S\left(r_{k}, \varphi_{k}\right) R\left(\vartheta_{k}\right)\left|0_{\mathbf{k}}, 0_{-\mathbf{k}}\right\rangle \\
\left|\phi_{\text {out }}(\eta)\right\rangle=\frac{1}{2} \prod_{\mathbf{k}} \frac{1}{\cosh r_{k}} \sum_{n=0}^{\infty}\left(-\tanh r_{k} e^{2 i \varphi_{k}}\right)^{n}\left|n_{\mathbf{k}}, n_{-\mathbf{k}}\right\rangle
\end{gathered}
$$

Conclusions and Future Developments

\checkmark Anharmonic effects produce an enhancement in the number of particles created due to the expansion
\checkmark The number of particles and the energy density increase exponentially when approaching the hilltop of the potential
\checkmark Anharmonic effects increase also the amount of squeezing of the perturbations
\checkmark Study the observables for this system, e.g. power spectrum and bispectrum
\checkmark Apply this machinery to the analysis of other physical systems, like primordial electromagnetic fields

Axion Perturbations

The action to consider is:

$$
\begin{aligned}
S & =\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{\phi}^{2} \cos \left(\frac{\phi_{0}}{f}\right) \phi^{2}\right]= \\
& =\int d^{3} x d \tau a^{2}\left[\frac{1}{2} \phi^{2}-\frac{1}{2}\left(\partial_{i} \phi\right)^{2}-\frac{1}{2} m_{\phi}^{2} a^{2} \cos \left(\frac{\phi_{0}}{f}\right) \phi^{2}\right]
\end{aligned}
$$

Define:

$$
u(\tau)=a(\tau) \phi(\tau)
$$

We can compute the corresponding Hamiltonian (in Fourier space):

$$
\left.\mathscr{H}=\frac{1}{2(2 \pi)^{3}} \int d^{3} k\left[p_{\mathbf{k}} p_{\mathbf{k}}^{*}+\left(k^{2}+m_{e f f}^{2}\right) a^{2}-\frac{a^{\prime \prime}}{a}\right) \chi_{\mathbf{k}} \chi_{\mathbf{k}}^{*}\right]
$$

Axion Perturbations

We quantize the fields introducing time-dependent ladder operators:

$$
\begin{aligned}
\chi_{\mathbf{k}} & =\frac{1}{\sqrt{2 \omega_{k}}}\left(a_{\mathbf{k}}(\tau)+a_{-\mathbf{k}}^{\dagger}(\tau)\right) \\
p_{\mathbf{k}} & =-i \sqrt{\frac{\omega_{k}}{2}}\left(a_{\mathbf{k}}(\tau)-a_{-\mathbf{k}}^{\dagger}(\tau)\right)
\end{aligned}
$$

$$
\omega_{k}^{2}=k^{2}+m_{e f f}^{2}-\frac{a^{\prime \prime}}{a}
$$

Respecting canonical commutation relations:

$$
\left[\chi_{\mathbf{k}}(\tau), p_{\mathbf{k}^{\prime}}^{\dagger}(\tau)\right]=i \delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right), \quad\left[a_{\mathbf{k}}(\tau), a_{\mathbf{k}^{\prime}}^{\dagger}(\tau)\right]=\delta^{(3)}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

Time-dependent ladder operators are linked with time-independent ladder operators via Bogoliubov transformation:

$$
\left\{\begin{array}{l}
a_{\mathbf{k}}(\tau)=\alpha_{k}(\tau) a_{\mathbf{k}}\left(\tau_{0}\right)+\beta_{k}(\tau) a_{-\mathbf{k}}^{\dagger}\left(\tau_{0}\right) \\
a_{-\mathbf{k}}^{\dagger}(\tau)=\tilde{\alpha}_{k}(\tau) a_{-\mathbf{k}}^{\dagger}\left(\tau_{0}\right)+\tilde{\beta}_{k}(\tau) a_{\mathbf{k}}\left(\tau_{0}\right)
\end{array}\right.
$$

Axion Perturbations

The fields $u_{\mathbf{k}}$ and $p_{\mathbf{k}}$ can be written alternatively in terms of the time-independent ladder operators directly:

$$
\begin{gathered}
\chi_{\mathbf{k}}=u_{k}(\tau) a_{\mathbf{k}}^{0}+u_{k}^{*}(\tau) a_{-\mathbf{k}}^{0 \dagger} \\
p_{\mathbf{k}}=u_{k}^{\prime}(\tau) a_{\mathbf{k}}^{0}+u_{k}^{* \prime}(\tau) a_{-\mathbf{k}}^{0 \dagger}
\end{gathered}
$$

Comparing:

$$
\begin{aligned}
& \alpha_{k}=\sqrt{\frac{\omega_{k}}{2}} u_{k}(\tau)-\frac{i}{\sqrt{2 \omega_{k}}} u_{k}^{\prime}(\tau) \\
& \beta_{k}=\sqrt{\frac{\omega_{k}}{2}} u_{k}^{*}(\tau)-\frac{i}{\sqrt{2 \omega_{k}}} u_{k}^{*^{\prime}}(\tau)
\end{aligned}
$$

$$
\longrightarrow \quad\left|\beta_{k}\right|^{2}=\frac{\omega_{k}}{2}\left|u_{k}\right|^{2}+\frac{1}{2 \omega_{k}}\left|u_{k}^{\prime}\right|^{2}-\frac{1}{2}
$$

Axion Perturbations

The Bogoliubov coefficients can be parameterised by the squeezing parameters:

$$
\left\{\begin{array}{l}
\alpha_{k}(\tau)=e^{-i \vartheta_{k}(\tau)} \cosh r_{k}(\tau) \\
\beta_{k}(\tau)=-e^{i\left[\vartheta_{k}(\tau)+2 \varphi_{k}(\tau)\right]} \sinh r_{k}(\tau)
\end{array}\right.
$$

Inverting these relations:

$$
\left\{\begin{array}{l}
r=\sinh ^{-1}|\beta| \\
\vartheta=\arccos \left(\operatorname{Re} \frac{\alpha}{|\alpha|}\right) \\
\varphi=-\frac{1}{2} \arccos \left(\operatorname{Re} \frac{\alpha \beta}{|\alpha \beta|}\right)
\end{array}\right.
$$

Axion Mode Functions

In terms of conformal time:

$$
u^{\prime \prime}+\left(k^{2}+m_{e f f}^{2} a^{2}-\frac{a^{\prime \prime}}{a}\right) u=0
$$

Solution for mass term potential:

$$
\begin{aligned}
& u_{D S}(\tau)=\frac{1}{4} \sqrt{\pi} e^{\frac{1}{2} i \pi\left(\nu^{2}+\frac{1}{2}\right)} \sqrt{\frac{1}{H_{*}}-\tau} H_{\nu}^{(1)}\left(k\left(\frac{1}{H_{*}}-\tau\right)\right) \\
& u_{R D}(\tau)=c_{1} D_{-\frac{i k^{2}+H * m}{2 H_{* * m}}}\left((1+i) \sqrt{\frac{m}{H_{*}}}\left(H_{*} \tau+1\right)\right)+c_{2} D_{\frac{i k^{2}-H_{*}}{2 H_{*} m}}\left((i-1) \sqrt{\frac{m}{H_{*}}}\left(H_{*} \tau+1\right)\right)
\end{aligned}
$$

Axion Mode Functions

In terms of e-folding time:

$$
u^{\prime \prime}+\left(1+\frac{H^{\prime}}{H}\right) u^{\prime}+\left(\frac{k^{2}}{H^{2}} e^{-2 \eta}-2-\frac{H^{\prime}}{H}+\frac{m_{e f f}^{2}}{H^{2}}\right) u=0
$$

Particle Creation in Curved Spacetime

Cosmological framework: the instantaneous vacuum defined by the time-dependent ladder operators $\left(a_{\mathbf{k}}(\eta), a_{\mathbf{k}}^{\dagger}(\eta)\right)$ is filled with particles associated with the initial timeindependent operators $\left(a_{\mathbf{k}}^{0}, a_{\mathbf{k}}^{0 \dagger}\right)$.

What is the correct choice for the initial ladder operators?

Particle Creation in Curved Spacetime

Cosmological framework: the instantaneous vacuum defined by the time-dependent ladder operators $\left(a_{\mathbf{k}}(\eta), a_{\mathbf{k}}^{\dagger}(\eta)\right)$ is filled with particles associated with the initial timeindependent operators ($a_{\mathbf{k}}^{0}, a_{\mathbf{k}}^{0 \dagger}$).

What is the correct choice for the initial ladder operators?

In Minkowski spacetime there is a unique choice for the vacuum state.

Particle Creation in Curved Spacetime

Cosmological framework: the instantaneous vacuum defined by the time-dependent ladder operators $\left(a_{\mathbf{k}}(\eta), a_{\mathbf{k}}^{\dagger}(\eta)\right)$ is filled with particles associated with the initial timeindependent operators ($a_{\mathbf{k}}^{0}, a_{\mathbf{k}}^{0 \dagger}$).

What is the correct choice for the initial ladder operators?

In Minkowski spacetime there is a unique choice for the vacuum state.

On an arbitrary spacetime, there are in general no isometries that allow to define uniquely the vacuum state.

Particle Creation in Curved Spacetime

Assuming Minkowski in the asymptotic past and future:

$$
a_{\mathbf{k}}(\eta) \underset{\eta \rightarrow-\infty}{\longrightarrow} a_{\mathbf{k}}^{\text {in }}, \quad a_{\mathbf{k}}(\eta) \xrightarrow[\eta \rightarrow+\infty]{\longrightarrow} a_{\mathbf{k}}^{\text {out }}
$$

Linked via time-independent Bogoliubov coefficients A_{k} and B_{k}.

Time-dependent Bogoliubov coefficients are their late time limit:

$$
\alpha_{k}(\eta) \underset{\eta \rightarrow+\infty}{\longrightarrow} A_{k}, \quad \beta_{k}(\eta) \xrightarrow[\eta \rightarrow+\infty]{\longrightarrow} B_{k}
$$

When the background felt by the fields can be approximated as constant in time?

$$
\text { Adiabaticity condition: } \quad\left|\frac{\omega_{k}^{\prime}}{\omega_{k}^{2}}\right|^{2},\left|\frac{\omega_{k}^{\prime \prime}}{\omega_{k}^{3}}\right| \ll 1
$$

Adiabaticity Condition

The adiabaticity condition is defined as:

$$
\left|\frac{\omega_{k}^{\prime}}{\omega_{k}^{2}}\right|^{2},\left|\frac{\omega_{k}^{\prime \prime}}{\omega_{k}^{3}}\right| \ll 1 \quad\left\{\begin{array}{l}
f^{\prime \prime}+\omega_{k}^{2} f=0 \\
\omega_{k}^{2}=k^{2}+m^{2} a^{2}-\frac{a^{\prime \prime}}{a}
\end{array}\right.
$$

If the adiabaticity condition holds: $\quad f(\tau)=\frac{A_{k}}{\sqrt{2 k}} e^{+i \rho^{\tau} \omega_{k}\left(\tau^{\prime}\right) d \tau^{\prime}}+\frac{B_{k}}{\sqrt{2 k}} e^{-i \rho^{\tau} \omega_{k}\left(\tau^{\prime}\right) d \tau^{\prime}}$

Adiabaticity Condition

\checkmark Around $\eta \simeq-14$ the frequency starts changing rapidly in time.
\checkmark When the mode is far superhorizon it settles to a constant value given by

$$
\frac{\omega^{\prime}}{\omega^{2}}=\frac{a a^{\prime}\left(m^{2}-2 H^{2}\right)}{\left[k^{2}+a^{2}\left(m^{2}-2 H^{2}\right)\right]^{3 / 2}} \longrightarrow 1 / \sqrt{2}
$$

\checkmark The adiabaticity condition holds when the field starts oscillating, around $\eta \simeq 8$
\checkmark It can be proved that

$$
\frac{\omega^{\prime}}{\omega^{2}} \rightarrow \begin{cases}\frac{a^{3} H m^{2}}{k^{3}} & k \gg a m \\ \frac{H}{m} & k \ll a m\end{cases}
$$

Adiabaticity Condition

Squeezing Formalism

To understand the physical meaning consider the simple harmonic oscillator

$$
q=\sqrt{\frac{\hbar}{2 \omega}}\left(a+a^{\dagger}\right) \quad \quad p=i \sqrt{\frac{\hbar \omega}{2}}\left(a-a^{\dagger}\right)
$$

Define the Hermitian field quadrature operators:

$$
X_{1}=a+a^{\dagger} \quad X_{2}=-i\left(a-a^{\dagger}\right)
$$

And the single-mode squeeze operator

$$
S(\varepsilon) \equiv \exp \left[\frac{\varepsilon^{*}}{2} a^{2}-\frac{\varepsilon}{2} a^{\dagger 2}\right] \quad \varepsilon=r e^{2 i \phi}
$$

Squeezing Formalism

Analysis of the Beta Coefficient

The beta coefficient can be tested analytically using the energy density.
1.

$$
\begin{gathered}
\rho_{\phi}=\rho_{\phi_{0}}+\frac{d \rho}{d \phi} \delta \phi+\frac{1}{2} \frac{d^{2} \rho}{d \phi^{2}} \delta \phi^{2} \\
\left\langle\delta \rho_{\phi}\right\rangle=\frac{1}{2} \frac{d^{2} \rho}{d \phi_{*}^{2}}\left\langle\delta \phi_{*}^{2}\right\rangle \quad\left\langle\delta \phi_{*}(\mathbf{x}) \delta \phi_{*}(\mathbf{y})\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{-i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \frac{H_{*}^{2}}{2 k^{3}}
\end{gathered}
$$

2.

$$
\delta \rho_{\phi}=\frac{\langle\mathscr{H}\rangle}{a^{4} V}=\frac{1}{a^{4}} \int d^{3} k \omega_{k}\left|\beta_{k}\right|^{2}
$$

$$
\longrightarrow \quad\left|\beta_{k}\right|^{2}=\frac{1}{2} \frac{d^{2} \rho}{d \phi_{*}^{2}} \frac{H_{*}^{2}}{2 k^{3}} \frac{a^{3}}{m}
$$

More Realistic Models: Smoothing the Hubble

We tried smoothing the Hubble in order to prove that the asymptotic behaviour is not affected by possible modifications to the Hubble during a non instantaneous reheating phase.

$$
H(\eta)=H_{*} \frac{e^{-2 \eta}}{e^{-2 \eta}+1}
$$

More Realistic Models: Smoothing the Hubble

We tried smoothing the Hubble in order to prove that the asymptotic behaviour is not affected by possible modifications to the Hubble during a non instantaneous reheating phase.

$$
H(\eta)=H_{*} \frac{e^{-2 \eta}}{e^{-2 \eta}+1}
$$

The adiabaticity condition still holds in the found regimes.

More Realistic Models: Smoothing the Hubble

Our results in the late time limit are not affected:

More Realistic Models: Quasi DS Inflation

What happens if we consider the background evolution of the Universe as given by a single-field inflationary model?

$$
H(\eta)= \begin{cases}m_{\varphi} \sqrt{\frac{1}{3}-\frac{2}{3} \eta} & \text { inflation } \\ \frac{m_{\varphi}}{\sqrt{3}} e^{-2 \eta} & \text { radiation }\end{cases}
$$

More Realistic Models: Quasi DS Inflation

What happens if we consider the background evolution of the Universe as given by a single-field inflationary model?

$$
H(\eta)= \begin{cases}m_{\varphi} \sqrt{\frac{1}{3}-\frac{2}{3} \eta} & \text { inflation } \\ \frac{m_{\varphi}}{\sqrt{3}} e^{-2 \eta} & \text { radiation }\end{cases}
$$

