The goal of this lecture is to provide a pedagogical introduction to the standard cosmological model, with a particular focus on large-scale structure formation at late times.
In this talk I will first show with toy examples how deep learning can find optimal summary statistics to extract the maximum information from cosmological data. I will then show how it can also perform really complex tasks like extracting information from very small, highly non-linear, scales while marginalizing over baryonic effects at the field level. I will also present the major...
In this talk, I will first give a gentle introduction to persistent homology with an emphasis on certain theorems that will be referenced in Mathieu’s talk later in the day. After this, I will discuss some recent advances in multiparameter persistent homology.
Persistent homology naturally addresses the multi-scale characteristics of the large scale structure. I will discuss the specifics of its application to mock galaxy catalogues to construct a simple and interpretable summary statistic. With the Fisher matrix formalism, I will show that our approach outperforms the momentum-space statistics in constraining cosmological parameters and offers...
We want to explore the potential of topological data analysis in detecting primordial non-Gaussianity through observations of the large scale structures of the universe. As a proof of concept, we estimate the Fisher information content on primordial non-Gaussianity using halo catalogs generated from N-body simulations run with both Gaussian and non-Gaussian initial conditions. We perform...