Speaker
Description
When analyzing data, researchers make some choices that are either arbitrary, based on subjective beliefs about the data-generating process, or for which equally justifiable alternative choices could have been made. This wide range of data-analytic choices can be abused and has been one of the underlying causes of the replication crisis in several fields. Recently, the introduction of multiverse analysis provides researchers with a method to evaluate the stability of the results across reasonable choices that could be made when analyzing data. Multiverse analysis is confined to a descriptive role, lacking a proper and comprehensive inferential procedure. Recently, specification curve analysis adds an inferential procedure to multiverse analysis, but this approach is limited to simple cases related to the linear model, and only allows researchers to infer whether at least one specification rejects the null hypothesis, but not which specifications should be selected. In this contribution, we present a Post-selection Inference approach to Multiverse Analysis (PIMA) which is a flexible and general inferential approach that considers for all possible models, i.e., the multiverse of reasonable analyses. The approach allows for a wide range of data specifications (i.e., preprocessing) and any generalized linear model; it allows testing the null hypothesis that a given predictor is not associated with the outcome, by combining information from all reasonable models of multiverse analysis, and provides strong control of the familywise error rate allowing researchers to claim that the null hypothesis can be rejected for any specification that shows a significant effect.
If you're submitting a symposium talk, what's the symposium title? | The Multiverse of Multi-labs. Methodological and Statistical Aspects of Multi-Lab and Multiverse Studies. |
---|---|
If you're submitting a symposium, or a talk that is part of a symposium, is this a junior symposium? | No |